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s ‘the—second:.-edition—appeared—in—1940:~Except—for—such

'PREFACE

Some mathematical works of considerable vintage have a

timeless quality about them. Like classics in any field, they
still bring joy and guidance to the reader. Substantial works

of this kind, when they concern fundamental priuciples and -

properties of school mathematics, iare being sought out by
the Supplementary Publications Committee. Those.that are
no lopger readily. available will be. reissued by the National
Council of Teachers of Mathematics. This book is the first
such classic deemed w01thy of once again being made avall-
able to the mathematics educatlon commumty

The initial manuscript for The PythaJm ean Proposition
was prepared in 1907 and first published in 1927. With per-
mission of the Loomis family, it is presented here exactly

-

necessary changes as providing new title and copyright

pages and adding this Preface by way of explanation, no
attempt-has been made to modernize the book in any way.

To do so would surely detract from, rather than add to, its

value. . .

+




"In Mathematics the man who is ig-
norant of what Pythagoras said in Croton in
‘500 B.C. about. the square on the longest
side of a right-angled triangle, or who for-
gets what someone in Czechoslovakia proved
last week about inequalities, is likely to
be lost. The whole terrific mass of well-
established Mathematics, from the ancient
Babylonians t6 the modern Japanese, is as
good today as it ever was.,' ' '

—E. Thoys'..“Bel:lvw -P‘h.. .D.. 5 19_31 .
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' FOREWORD

According to Hume, (England's thinker who
interrupted Kant's "dogmatic slumbers"), arguments
may be divided into: (a) demonstrations; (b) proofs;

. (¢) probabilities,

By a demonstration, (demonstro, to cause to-
see), we mean a reasoning éonsisting of one or more
catagorical propositions "by which some proposition
brought into question 1s shown to be contained in
some other prdposition assumed, whose truth and cer-
tainty being evident and acknowledged, the proposi-
tion in question must also be admitted certain. The
result is science, knowledge, certainty." The knowl-
edge which demonstration gives 1s fixed and unalter-
able., It denotes necessary consequence, and 1s
synonymous with proof from first principles.

Byproof, (probo, to make credible, to demon-
strate), we mean 'such an argument from experience
as leaves no room for doubt or opposition'; that is,
evidence confirmatory of a proposition, and adequate
to establish it, .

The object of this work 1s to present to the
future investigator, simply and concisely, what is
known relative to the so-called Pythagorean Proposi-
tion, (known as the 47th proposition of Euclid and as
the "Carpenter's Theorem"), and to set forth certain
established facts concerning the algebraic and geo-
metric proofs and the geometric figures pertaining
thereto.

It establishes that:

First, that there are but four kinds of demon-
strations for the Pythagorean proposition, viz.:

N

. I. Those based upon Linear Relations. (im-
plying the Time Concept)Mthe Algebraic Proofs.

vii
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viii THE PYTHAGOREAN PROPOSITION

7 777 II. Those based upon Comparison of Areas -
(implying the Space Concept)--the Geometric Proofs.
III. Those based upon Vector Operation (im-
plying the Direction Concept)--the Quaternionic
Proofs.
IV. Those based upon Mass and Velocity (im-
plying the Force Concept)--the Dynamic Proofs.

Second, that the number of Algebralc proofs
1s limitless., .

Third, that there are only ten types of geo-
metric figures from which a Geometric Proof can bé
deduced. _

This third fact is not mentioned nor implied

* by any work consulted by the author of this treatise,
but which, once established, becomes the basis for
the classification of all possible geometric proofs.

, Fourth, that the number of geometric proofs
is limitless.

Fifth, that no trigonometric proof is possi-
ble, _

- By consulting the Table of Contents any in-

- ‘ vestigator can determine in- what field his proof
falls, and then, by reference to the text, he can
find out wherein it differs from what has already -
been established,

With the hope that this simple exposition of
this historically renowned and mathematically funda-
mental proposition, without which the science of Trig-
onometry and all that i1t implies would be imposgtible;-
may interest many minds and prove helpful and sugges-

*tive to the student, the teacher and the future orig-
inal investigator, to each and to all who are seeking
more light, the author, sends it forth.

W
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. ABBREVIATIONS AND CONTRACTIONS

- Am. Math. Mo. = The American Mathematical Monthly,
100 proofs, 1894,
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Colbrun = Arthur R. Colbrun, LL.M., Dist., of Columbia .
Bar. -
“‘const. = construct.

const'd = constructed.
cos = cosine.

Dem. = demonstrated, or demonstration.

Edw. Geom, Edward's Elements of Geometry, 1895.

eq. = equation. . - 1
eq's = equations. : . N

Fig. or fig. = figure

Fourrey = E. Fourrey's Curiosities Geometriques.

Heath = Heath's Mathematical Monographs, 1900,
Parts I and II--26 proofs.

h-square = square upon the hypotenuse.

Jour., Ed'n = Journal of Education.

Legendre = Davies Legendre, Geometry, 1858,

Math, = mathematics

Meth Mo. = Mathematical Monthly, l858 9. : .
) Mo. = Monthly. :
o No. or no. = number.

Olney's Geom. Olney S Elements of Geometry, Unl-
versity Edition .
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p. = page. :
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Richardson = John M., Richardson--28 proofs.

rt. = right.
rt. tri. = right trilangle. =
rect. = rectangle.

Sci. Am. Supt. = Scientific American Supplement,
1910, Vol. 70O. )

sec = secant,
sin = sine,
sq. = square,

sq's = squares,

tang = tangent,

. = therefore,

tri. = triangle.

tri's = triangles.

trap. = trapezoid.

V. or v, = volume,

Versluys = Zes en Negentic (96) Bewel jzen Voor Het
Theorema Van Pythagoras, by J. Versluys, 1914,

Wipper = Jury Wipper's "46 Bewelse der Pythagor-

' aischen Lehrsatzes," 1880. ' o

'HE®, or any like symbol = the square of, or upon, the

line HE, or like symbol. ’

ACIAF, or-like symbol = AC + AF, or %%- See proof 17.
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THE PYTHAGOREAN PROPOSITION

This‘celebrated proposition 1s one of the
most important theorems in the whole realm of geome-
try and 1s known in history as the 47th proposition,
that being its number in the first book of Euclid's
Elements. : :
It is also (erroneously) sometimes called the
Pons Asinorum. Although the practical application
of thls theorem was known long before the time of-
Pythagoras he, doubtless, generalized it from an Egyp-~
tian rule of thumb (32 + 42 = 52) gnd first demon-
strated 1t about 540 B.C., from which fact 1t is gen-
erally known as the Pythagorean Proposition. This
famous theorem has always been a favorite with geo-
metricians, .

(The statement that Pythagoras was the in-
ventor of the 47th proposition of Euclid has beer® de-
nied by many students of the subject.)

Many purely geometric demonstrations of this
famous theorem are accessible to. the teacher,. as well
as an unlimited number of proofs based upon the al-

' gebraic method of geometric investigation. Also
quaternions and dynamics furnish a few proofs,

No doubt many other proofs’ than these now
known will be resolved by future investigators, for
the possibilities of the algebraic and geometric re-
lations implied in"the theorem are limitless,

This ‘theorem with its many proofs is a strik-
ing 1llustration of the fact that there 1s more than
one way of establishing the -same truth.

But before proceeding to the methods of dem-
onstration, the following historical account trans-
lated from a monograph by Jury Wipper, published in
1880, and entitled "46 Beweise des Pythagoraischen.
Lehrsatzes," may prove ‘both interesting and profita- '
ble.

i
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4 ‘ THE PYTHAGOREAN PROPOSITION

Wipper acknowledges his indebtedness to
F. Graap who translated it out of the Russian. It 1s
as follows: "One of the weightlest propositions in
geometry if not the weightlest with reference to its
deductions and applications is doubtless the so-
called Pythagorean proposition.”
" The Greek text is as follows:

'Ev Tol¢ dpBoywviol¢ TO 4md ThH¢ Trhv pbAv
yov{ay OTMoTelvoUon¢ MAevpl¢ rerpdywvov foov &ot!l ToT¢
&nd Tdv Tiv 6p6Av ywviav neptexouowv TAEV PGV
TeTpaydvot .

The Latin reads: In rectangulis triangulils
quadratum, quod a latere rectum angulum subtendente
describitur, aequale est eis, quae a lateribus rectum
angulum continentibus describuntur.

"German: In den rechtwlinkeligen Drelecken 1st
das Quadrat; welches von der- dem rechten Winkel
gegenuber liegenden Seite beschrieben Wird, den Quad-
raten, welche von den ihn umschlliessenden Seiten

beschrieben werden, gleich.

.According to the %estimony of Proklos the
demonstration of this propositlion is due to Euclid
who adopted i1t in his elements (I, 47). The method
of the Pythagorean demonstration remains unknown to
us. It 1s undecided whether Pythagoras himself dis-
covered this characteristic of the right triangle, or
learned it from Egyptlan priests, or took 1t from -

- Babylon: regarding this opinions vary.

According to that one most widely disseminat-
ed Pythagoras learned from the tgyptian priests the
characteristics of a triangle in which orie leg = 3
(designating Osiris), the second = 4 (designating
Isis), and the hypotenuse = 5 (designating Horus):
for which reason the triangle itself is also named
the Egyptian or Pythagorean.¥

*(Note. . The Grand Lbdge Bulletin, A.F. and A.M., of Iowa, Vol.
30, No. 2, Feb. 1929, p. 42, has: In an old Egyptian manu-
script, recently discovered at Kahan, and supposed to belong

-~




THE PYTHAGOREAN PROPOSITION 5

The characteristics of such a triangle, how-
ever, were known not to the Egyptian priests alone,
the Chinese scholars also knew them. "In Chinese
history," says Mr. Skatschkow, "great honors are
awarded to the brother of the ruler Uwan, Tschou-Gun,
who lived 1100 B.C.: he knew the characteristics of
the right triangle, (perfected) made a map of the
stars, discovered the compass and determined the
length of the meridian and the equator.’

Another scholar (Cantor) says: this emperor
wrote or shared in the bomposition of a mathematical
treatise in which were discovered the fundamental
features, ground lines, base lines, of mathematics,
in the form of a dialogue between Tschou-Gun and
Schau-Gao. The title of the book is: Tschaou pi,
i.e., the high of Tschao. Here too are the sides of
a triangle already named legs as in the Greek, Latin,
German and Russian languages. ;

Here are some paragraphs of the lst chapter

" of the work. Tschou-Gun once said to Schau-Gao: "I

learned,- sir, that you know numbers and their appli-
cations, for which reason I would like to ask how old
Fo-chl determined the degrees of the celestial sphere.
There are no steps on which oné can climb up to the
sky, the chain and the bulk of the earth are also in-
applicable; I would like for this reason, to know how
he determined the numbers."
Schau-Gao replied: "The art of counting goes

back to the circle and square."

) If one divides a right triangle into its
parts the line which unites the ends of the sides

(Footnote continued) to the time of the Twelfth Dynasty, we
find the following equations: 1% + (% = (11)%; 82 4 62
= 10%; 22 + (13)2 = (2})3; 162+ 12% = 203 all of which are
forms of the 3-4-5 triangle. ....We also find that this tri-
angle was to them the symbol of universal nature.. The base k&
" represented Osiris; -the perpendicular 3, Isis; and the hypote-
nuse represented Horus, their gon, being the product of the
two principles, male and female,)

o a
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when the base = 3, the altitude = 4 is 5, )
Pschou-Gun cried out: "That is indeed ex-
cellent."

- It is to be observed that the relations bé-
tween China and.Babylon more than probably led to the
assﬁmptiqn that this characteristic was already known
to the-Chaldeans. As to the geometrical demonstra-
tion it Comes doubtless from Pythagoras himself. 1In
busying with the addition of the series he could very
naturally g0 from the triangle with sides 3, 4 and 5,
as & single instance to the general characteristics
of the right triangle. ’ , o

After he observed that addition of the series
of odd number (1 + 3 =4, 1 +3 + 5 =9, etc.) gave
a series of squares, Pythagoras formulated the rule

" for finding, logically, the sides of a right triangle:

Take an odd number (say 7) which forms the shorter
side, square it (7% = 49), subtract one (49 - 1 = 48),
halve the remainder (48 - 2 = 24); this half is the
longer side, and this increased by one (24 + 1 = 25),
is the hypotenuse. s ‘

The sncients recognized already the signifi-
cance of the Pythagorean proposition for which fact
may serve among others as proof the account of Dioge-
nes Laertius and Plutarch concerning Pythagoras. The
latter is said to have offered (sacrificed) the Gods
an ox in gratitude after he learned the notable char-
acteristics of the right triangle. This story is
without doubt a fiction, as sacrifice of animals,
i.e., blood-shedding, antagonizes the Pythagorean
teaching.

During the middle ages this proposition which
was also named inventum hecatombe dignum (in-as-much
as 1t was even belleved that a sacrifice of a heca-
tomb--100 oxen--was offered) won the honor-designa-
tion Nagister matheseos, and the knowledge thereof
was some decades ago still the proof of a solid mathe-

. matical training (or éducation). In examinations to

obtain the master's degree this proposition was often
given; there was indeed a time, as 1s maintalned,




H

77 THE PYTHAGOREAN PROPOSITION 7

.

when from every one who submitted himself to the test
&8 master of mathematics a new (original) demonstra-
tlon was required.

Thls latter circumstance, or rather the great
significance of the proposition under consideration
was the rea<on why numerous demonstrations of it were
thought out.

The collection of demonstrations which we
bring in what follows,* must, in our opinion, not
merely satisfy the simple thirst for knowledge, but f
also as impcrtant aids in the teaching of geometry.

The variety of demonstrations, even when some of them

are finical, must demand in the learners the develop- '

ment of rigidly logical thinking, must show them how . 1
many sidedly an object can be consldered, and spur
~them on to test their abilities in the discovery of
'like demonstrations for ;the one or the other proposi-

tion." N : ' i
|

Brief Biographiqal Information
Concerning Pythagoras

"The birthplace of Pythagoras was thé island
of Samos; there the father of Pythagoras, Mnessarch,
obtained citizenship for services which he had ren-
dered the inhabitants of Samos during a time of fam-
ine. Accompanied by his wife Pithay, Mnessarchofre-
quently traveled in business interests; during the
‘year 569 A.C. he came to Tyre; here Pythagoras was
born. At eilghteen Pythagoras, secretly, by night,
went ‘from (left) Samos, which was in the power of the
tyrant Polycrates, to the island Lesbos to his uncle
who welcomed him very hospitably. There for two years
he received instruction from Ferekid who with Anak-
simander and Thales ha@ the reputation of a philoso-
pher, )

*Note. There were ‘but 46 different demon,strétions in the mono-
graph by Jury ‘Wipper, which 46 are among the classified collec-
tion found in this work. ) )
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.. After Pythagoras had made the relligious ideas.

of his teacher his own, he went to Anaksimander and

Thales in Miletus (549 A.C.). ~The latter was then
already 90 years old. With these men Pythagoras stud-
ied chiefly cosmography, i.e., Physics and Mathemat-
ics. h

Of Thales it is known that he borrowed the
solar year from Egypt; he knew how to calculate sun
and moon eclipses, and determine the elevation of &
pyramid from its shadow; to him also are attributed
the discovery of geometrical projections of great im-

Vport} e.g., the characteristic of the angle which is

inscribed and rests with its sides on the dlameter,.
as well as the characteristics of the angle at the
base of an (equilateral) isosceles triangle.

Of "Anaksimander it is known that he knew the
use of the dial in the determination of the sun's ele-
vation; he was the first who taught geography and
drew geographical maps on copper. It must be observed
too, that Anaksimander was the first prose writer, as
down to his day all learned works were written in

~verse, a procedure which continued longest among the

East Indians.

' Thales directed the eager youth to Egypt as
the land where he could satisfy his thirst for knowl-
edge. The Phoenician priest college in Sidon must in
some degree serve as preparation for this journey.
Pythagoras 8pent an entire year there and arrived in
Egypt 547.° '

Although Polikrates who had forgiven Pytha-
goras' nocturnal flight addresses to Amasis a letter
in which he comménded the young scholar, it cost
Pythagoras as a forelgner, as one unclean, the most
incredible toil to gain admission to the priest ‘caste
which only unwillingly initiated even their own peo-
ple into their mysteries or knowledge.

" The priests in the temple Heliopolis to whom
the king in person brought Pythagoras declared it im-
possible to receive’ him into .their midst, and direct-
ed him to the oldest priest college at Memphis, this
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commended him to Thebes. _ Here somewhat severe condi-
tions were 1laig upon Pythagoras for his reception
into the priest caste; but nothing could deter him,
Pythagoras performed all the rites, and all tests,
and his study began under the guldance of the chief
oriest Sonchis,
; ‘ During his 21 years stay in Egypt Pythagoras
: Succeeded not only ’in fathoming and absorbing all the
Egyptian but also became sharer in he highest honors
of the priest caste. . \
In 527 Amasis died; in the following (526)
year in the reign of Psammenit, son .of Amasis, the
. Persian king Kambis invaded Egypt and loosed all his
fury aga’nst the priest caste, ) o e
Nearly all members thereof fell into captivi-
ty, among them Pythagoras, to whom as abode Babylon
was assigned. Here in the center of tHe world com-
merce where Bactrians, Indians, Chinese} Jews and _
.other folk came togzther, Pythagoras had during 12 4
Years stay opportunity to acquire those learnings in ;
which the Chaldeans were 80 rich. '
-A singular accident secured Pythagoras liber-
\ . ty 1n consequence of which he returned to his native
- land 1n his 56th year. Aftep a brief stay on the
island Delos where he found his teacher Ferekid stil1
alive, he Spent a half year in a visit to Greece for
the purpose of making himself familiar.with the re-
.ligious, scientific_and social condition thereof,

_ The opening of the teaching activity of Pytha-
goras, on the island of Samos, was extraordinarily
sad; 1n order not to remain wholly’withoqt pupils he
was forced even to pay his sole pupil, who was also
named Pythagoras, a son of Efatokles. This led him
to abandon his thankless land and seek a new home in
the highly cultivated cities of Magna Graecia (Italy).

In 510 Pythagoras came to Kroton. As 1s —
known it was a turbulent year. Tarquin was forced to
! flee from Rome, Hippias from Athens; in the neighbor-
hood of Kroton, in Sibaris, insurrection broke out.
The first appearance of Pythagoras before the - :. v
n with an ordation to the youth

¥

' people of Kroton bega

.
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wherein he rigorously but at the same time so con-
vincingly set forth the duties of young men that the
elders of the city entreated him not to leave them
without guidance (counsel). In his second oration
he called attention to law abiding and purity of mor-
als as the butresses of the family. In the two fol-
lowing orations he turned to the matrons and chil-
dren. The result of the last oration in which he
specially condemned luxury was that thousands of-
costly garments were brought to the temple of Hera,
because no matron could make up her mind to appear
in them on the street.

Pythagoras spoke captivatingly, and it is for
this reason not to be wondered at that his orations
brought about a change in the morals of Kroton's in-
habitants, crowds of listeners streamed to him. Be-
sides the youth who listened all day long to .his
teaching some 600 of the worthiest men of the city,.
matrons and maldens, came together at his evening
entertalnments; among them was the young, gifted and
beautiful Theana, who thought i1t happiness to become
the wife of the 60 year old teacher.

The listeners divided accordingly.into disci-
ples, who formed a school in the narrower sense of
the word, and into auditors, a school in the broader
sense.:- The former, the so-called mathematicians were
given the rigorous teabhing of Pythagoras as a scien-
tific whole in logical succession from the prime con-
cepts of mathematics up to the highest abstraction of

"philosophy; at the same time they learned to regard
everything fragmentary in knowledge as more harmful
than ignorance even.

From the mathematicians must be distinguished
the auditors (university extensioners) out of whom
subsequently were formed the Pythagoreans, These
took part in the evening lectures only in which noth-
ing rigorously scientific was taught. The chief
themes of these lectures were: .ethics, immortality
T the soul, and transmigration--metempsychology.

\ About the year 490 when the Pythagorean
school reached its highest splendor--brilliancy--a-

4
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certain Hypasos who had been expelled from the school

as unworthy put himself at the head of the democratic

party in Kroton and appeared as accuser of his former

colleagues., The school was broken up, the property

of Pythagoras was confiscated and he himself exiled.-
- The subsequent, 16 years Pythagoras lived in

. Tarentum, but even here the democratic party gained

the upper hand in 474 and Pythagoras a 95-year old
man must flee again to Metapontus where he dragged
out his poverty-stricken existence 4 years 'more., Fi-
nally democracy triumphed there also; the house 1in
which was the school was burned, many disciples died
a death of torture and Pythagoras himself with dif-
ficulty having escaped the flames died soon after in
his 99th year."*

Supplementary Historical Data

To .the following (Graap's) translation, out
of the Russilan, relative to the great master Pytha-
goras, these 1nteresting statements are due.

"Fifteen hundred years before the time of
Pythagoras, (549-470 B.C.),** the Egyptians construct-
ed right angles by so placing three pegs that a rope-
measured off into 3, 4 and 5 units would just reach
around them, and for this purpose professional 'rope
fasteners' were employed,

"Today carpenters and masons make right an-
gles by measuring off 6 and 8 feet in such a manner
that a 'ten-foot pole' completes the triangle.

"Out of this simple Nile-compelling problem
of these early Egyptlan rope-fasteners Pythagoras 1is
sald to have generalized and proved this important
and famous theorem,--the square upon the hypotenuse \

*Note The above translation is that of Dr., Theodore H. John-
ston, Principal (1907) of the West 'High School, Cleveland, O,
**Note. From recent accredited biographical data as to Pytha-
goras, the récord reads: "Born at Samos, c. 582 B.C. Died
probably at Métapontum, c. 501, B.C."
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of—a—right-—-triangle—ts—equal—tothe sumof the

B

squéres upon its two legs,--of which- the right tri-
angle whose sides are 3, 4 and 5 is a simple and par-
ticular case; and for having proved the universal
truth implied in the 3-4-5 triangle, he made his name
immortal--written indelibly across the ages.

o In speaking of him and his philosophy, the
Journal of the Royal Socilety of Canada, Section II,

" Vol. 10, 1904, p. 239, says: "He was the Newton, the

Galileo, perhaps the Edison and Marconl of his

- Epoch..... 'Scholars now go to Oxford, then to Egypt,

for fundamentals of the past..... The philosophy of
Pythagoras is Asiatic--the best of India--in origin,
in which lore he became proficient; but he committed
none of his views to,writing and forbid his followers
to do- so, insisting’that they listen and hold their
tongues. '" ! . :
He was indeed the Sarvonarola of his epoch;
he excelled in philosophy, mysticism, geowetry, a
writer upon music, and in the field of astronomy he
anticipated Copernicus by making the sun the center
of the cosmos. "His most original mathematical work
however, was probably in the Greek Arithmetica, oF
theory of numbers, his teachings being followed by
all subsequent Greek writers on the subject."
Whether his proof of the famous theorem was
wholly original no one knows; but we now know that
geometers of Hindustan knew this theorem centuries
before hls time; whether he knew what they knew 1s
also unknown. But he, of all the masters of antiqui=-
ty, carries the honor of its place and importance in
our Euclidian Geometry. '
On‘account of 1its extensive application in

the field of trigonometry, surveying, navigation and

astronomy, 1t is one of the most, if not the most,

interesting propositions in elementary plane geometry.

It has been variously denominated as, the
Pythagorean ‘Theorem, The Hecatomb Proposition, Thea
Carpenter's Theorem, and the Pons Asinorum because of
its supposed difficulty.- But the term "Pons Asinorum’

P
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also attaches to Theorem V, properly, and to Theorem
XX erroneously, of” Book I of Euclid‘s Elements of
Geometry.

It 1s regarded as the most fascinating Theo-
rem of all Euclid, so much so, that thinkers from all
classes and nationalities, from the aged philosopher
in his armchair to the young soldier 1n the trenches ~
next to nb-man's-land, 1917, have whiled away hours
seeking a new proof of its truth.

Camerer,” in his notes on the First Six Books
of Euclid's Elements gives a collection of 17 differ-
ent demonstrations of this theorem, and from time to
time others have made collections,--one of 28, an-
other of 33, Wipper of 46, Versluys of 96, the Ameri-
-can Mathematical Monthly has 100, others of lists
ranging from a few to over 100, all of which proofs,
with credit, appears in this (now, 1940) collection
of over 360 different proofs, reaching in time, from
900. B.C., to 1940 A.D. .

: Some of these 367 proofs,--supposed to be
new--are very old; some are short and simple; others
are long and complex; but each 1s a way of proving
the same truth.

Read and take your choice, or better, find a
new, a different proof,  for there are many more proofs
possible,_ whose figure will be different from any
one found herein. . -

*Note. Perhaps J.G. See Notes and Queries, 1879, Vol. V, No.
ul’ Po ;'l'lt x - =~ ¢
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"Mathematics is queen of éhe sci~
ences and arithmetic is queen of Mathe-
matics, She often condescends to render

_service to astronomy and other natural
sciences, but under all circumstances the
first pface is her due.,"”

Gauss (177771855)
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THE PYTHAGOREAN THEOREM

From an Arithmetico-Algebraic Point of View

Dr. J. W. L. Glashier in his address before
Section A of the British Assoclation for the Advance-
ment of Science, 1890, said: "Many of the greatest
masters of the Mathematical Sciences were first at-
tracted to mathematical inquiry by problems concern-
ing numbers, and no one can glance at the periodicals
of the present day which contains questions for. solu-
tion without noticing how singular & charm such prob-
lems continue to exert." -

One of these 'charming problems was the deter-
mination of "Triads of Arithmetical Integers" such
that the sum .of the squares of the two lesser shall
equal the square of the greater number.

These triads, groups of three, represent the
three sides of a right triangle, and are infinite in
number,

' Many ancient master mathematicisns sought
general formulas for finding such groups, among whom
worthy of mention were Pythagoras (c. 582-c. 501 B.C.),
Plato (429-348 B.C.), and Euclid (1living 300 B.C.),
because of their rules for finding such triads, =

In our public libraries may be found many
publications containing data relating to the sum of
two square numbers whose sum is a square number among
which the following two mathematical magazines are
especlally worthy of notice, the first being "The
Mathematical Magazine," 1891, Vol. II, No. 5, in
which, p. 69, appears an articlé by that master Mathe-
matical Analyst, Dr. Artemas Martin,  of Washington,
D.C.; the second being "The American Mathematical
Monthly," 1894, vol. I, Ng. 1, in which, p. 6, ap-
pears an-article by Leonard E. Dickson, B.Sc., then
Fellow in Pure Mathematics, Unilversity of Texas.

17 ..

7
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Those who are interested and desire more data
relative to such numbers than here culled therefrom, .
the same may be obtained from these two Journals.

From the article by-Dr. Martin. "Any number
of square numbers whose sum 1s a square number can be
found by various rigorous methods of solution."

Case I. Let it be required to find two
square numbers whose sum is & sSquare number.

Firsﬁ Method.  Take the well-known identity
(x + y)% = x2 + 2xy + y2 = (x - y)2 + 4xy. ---(1)

Now if. we can transform hxy into a square we
shall have expressions for two square numbers whose
sum 1s a square number )

Assume x = mp and y = mq , and we have
| ) bxy = 4m®p®q®, which is a square number for all val-

s —ues cf m, p and q, and (1) becomes, by substitution,
A (mp F g2 = (mp? - mq®)® + (2mpq)2 or striking
out .the common square\factcr m? » we have (p2 + q2)2
o = (p? - a®)? + (2pq)®. ———(2)—_

Dr. Martin follows this by ‘a second and a
third method, dnd discovers that both (second @nd...
~third) methods reduce, by simplification, to formui\\\\\‘\\\
(2). -

Dr. Martin declares, (and supports his decla-
ration by the .investigation of Matthew Collinsf

- "Tract on the Possible and Impossible Cases of Quad-
ratic Duplicate Equalities in the Diophantine Analy-
sis," published at Dublin in 1858), that no expres-
sion for two square numbers whose sun 1s a square can
be found which are not deducible from this, or re—
ducible to this formula,--that (2pq)° + (pZ? - q 2y2. 13
always equal to (p® + q%)%

His numerical 1llustrations are:

Example 1. Let P =2, and q = 1; then
p? + q® =5, p2 - q2' = 3, 2pq = 4, and we have 32 + 42
_ =2

Example 2. Let p = 3, q = 2; then p® + q°
= 13, p2 - g2 =5, 2pg = 12. . 52 + 122 = 132, ete.,
ad infinitum, «
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From the article by Mr. Dickson: 'Let the
three integers used to express the three sides of a
right triangle be prime to each other, and be symbol-
ized by a, b and h.' Then these facts follow:

1. They can not all be even numbers, otherwise they
would still be divisible by the common divisor 2.

2. They can not all be odd numbers. For a2 + b2 = h2.
And 1if a and b are odd, their squares are odd, and

the sum of thelr squares is even; 1.e., h2 1s even.

‘But if h2 is even h must be even. ;

3. h must always be odd; and, of the remalning two,
one must be even and the other odd. So two of the
three integers, a, b and h, must always be odd.
(For proof, see p. 7, Vol. I, of said Am. Math.
Monthly.) ) '

4. When the sides of a right triangle are integers,
the perimeter of the triangle 1s always an even
number, and its area 1s also an even number.

Rules for finding integral values for a, b

and h,
n2 - 1
1. Rule of Pythagoras: Let n be odd; then n, >
2
and-E—ig—l are three such numbers. For
’ (n? - 1)2 .4n2 + n* _ 2n2 4+ 1 _‘<n2 + l)g
n2 + | —=) = = —) .
2 4 2

2. Plato's Rule: Tet—m-be_any even number divisible

ma m T

2
by 4; then m, 7 - 1, and 5~ + 1 are three such

2 2 T4 2
2 me ) L mT
numbers. For m® + (4 1) m< + T + 1
= — 4+ — + ={— + .
Ttz ‘*;1>

3. Euclid's Rule: Let x and y be any two even or odd
numbers, such that x and y contain no common fac-
tor greater than 2,'and xy is a square. Then Xy,

5—5—2 and--J-[-—g-—I are three such numbers. For
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4. Rule of Maseres (1721-1824): Let m and n be any
m2 + n2
two even or odd, m > n, and - on

an integen.

2 2 4. 2
m? - n m< 4+ 'n< . .
2 s T and—r—zg;—— are three such numbers.
n .
m® - n®  4m2n® + m* - 2m® + n® + n* -

2n B 4n2
m? + n2\2
_< 2n ) '

5. Dickson's Kule: Let m and n be any two prime in-
tegers, one even and the other odd, m > n and 2mn
a square. Then m +y2mn, n +V2mn and m + n
+Vamn are three such numbers., For (m + /Zmn)2
+ (n +v2mn)2 + m2 + n2 + 4mn + 2m V2mn + 2n\/2mn
= (m + n +\2m)2

Thenn1

For m2 +

6. By inspection it is evident that these five rules,
--the formulas of Pythagoras, Plato, Euclig, -
Maseres and Dickson,--each reduces to thq/;ormula

P ¥

2 of Dr, Martin ‘ _—
- /
In the Rule of Pyunégoras multiply by 4 and
-square -and there. _results (2n)% + (n® - 1)2 = (n3%+1)%
in Whichfp n and q=1,
e In the Rule of Plato: multiply by U4 and
—_— square and there results‘(2m)2 + (m® - 2%)2
= (m® + 2%)2 - 4n which p = m and q= 2.
In the Rule of Euclid: multiply by 2 and
square there results (2xy)2 + (x - v = (x + y)Z, in
which p = x and q = y.
In. the Rule of Maseres multiply by 2n and
square and results are (2mn)® + (m® - n2)2
= (m® + n®)%, in which p = m and q =
.7 In Rule of Dickson: equating and solving

7 - '
p=\/m’+n+2\/§mn+\/m Do :
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_\/& +n+2yemn -vm - n
- 2

b Or if desired, the formulas of Martin, Pytha-
goras, Plato, Euclid and Maseres may,be reduced to
‘ that of Dickson.
' The advantage of Dicksﬁn 8 Rule is this: It
.glves every possible set of values for a, b and h in
their 1owest terms, and “gives this set but once.

; To apply hls rule, proceed as follows: Let
m be any odd squ/fe whatsoever, and n be the double
of any égggré/number whatsoever not divisible by m.

/////Exam les If m= 9, n may be the double of
///Jf 4 16 25, 49, etc.; thus wvhenm = 9, and n = 2,
" then m +-¢ﬁhn =15, n+v2mn = 8, m + n + V2mn = 17.
Soa=8, b=15 and h = 17
If m=1, and n = 2, we get a = 3; b =4,

oo

h = 5,

If m=25, and n = 8, we get a = 25, b = 45,
53, etc., etc,.
Tables of integers for values of a, b aad h

have been calculated. ,
Halsted's Table (in his "Mensuration") is ab-

Solutely complete as far as the 59th set of values.

h
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‘METHODS OF PROOF

Nethod 1s the following of one thing
throug¢h another. Qrder ts the followtng of

one thing after another.

The fype and form of a figure necessarily de-
termine the posslble argument of a derived proof;
hence, as an aid for reference, an order of arrange-
ment of the proofs 1s of great importance.

In this exposition of some proofs of the

’Pythaéorean theorem the aim has been to classify and

arrange them as to method of proof and type of fig-
ure used; to.give the name, 1n case it has one, by -
which the demonstration is known; to give the name

and page of the journal, magazine or text wherein the
proof may be found, if known; and occasionally to

give other interesting data relative to certain
proofs..

The order of arrangement,hefein is, only in
part, my own, belng formulated after a study of the
order found in the several groups of proofs exéamined,
but more especially of the order of arrangement given
in The American Mathematical Mo%thly, Vols., III and

"~ IV, 1896-1899. :

It 1s assumed that the person using this work
will know thé fundamentals of plane geometry, and
that, having the figure before him, he will readily
supply the "reasons why" for the steps taken as,
often from the figure, the proof is obvidus; there-
fore only such statements of construction and demon-
stration are set forth in the text as 1s necessary to
establish the agrument of the particular proof.

- 22
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The Methods of Proof Are:

I. ALGEBRAIC PROOFS THROUGH LINEAR RELATIONS .

A. Similar Right Triangles
From linear relations of similar right trian-

gles 1t may be proven that, The square of the hypote- y
nuse of a right triangle is equal to the sunm of the~

.squares of the other two sides.
T

_ And since the algebraic square is the measure

of the geometric square, the truth of the proposition

-a8 just stated involves the .truth of theé proposition
as stated under Géometric Proofs through comparison
of areas. Some algebraic proofs are the following:

.Q_.e.~

In rt tri. ABH, draw EC :
perp to AB. The tri's ABH, ACH and
HCB are similar. For ‘convenience;
denote BH, HA, AB, HC, CB.and AC by
a, b, h, x, y and h-y resp'y. Since,’
from three similar and related tri--
anglesK there are possible nine sim-

) Fig. 1 ple proportions, thesé proportions

and their resulting equations are: X

() 2a:x=Db:nh - y ah - ay = bx. f

(@Ya:y=Db: x = by. ]

(3 x : y=h -y : x - x2 = hy - y°.

() a : x=h : b - ab = hx.

(5) a: y=h: a . a® = hy.

(6) x* y=Db : a . ax = by. B

(TY b :h-y=h:b. b2 =n2 . hy.

(8) b:x=h: a . ab = hx. -

(Y h -3 :x=01p: - ah - ay . See Versluys,
p. 86, fig. 97, Wm W. Rupert

] Since equations (1) and (9) are identical,
also (2) and (6), and (4) and (8), there remain but
8ix different equations, and the problem becomes,

3

\




i

24 THE PYTHAGOREAN PROPOSITION

how may these six equations be combined so as to give
the desired relation h® = a + b?, which geometrical-
1y interprested is AB? = BH® + HAZ,

In this proof One, and in every case here-
after, as in proof Sixteen, P 41 the symbol AB?

a like symbol, signifies AB%

Every rational solution of h®? = a? + b? af-
fords a Pythagorean triangle. See "Mathematical Mon-
ograph, No. 16, Diophe tine Analysis," (1915), by
R. D. Carmichael.

1st.--Legendre's Solutlion

a. From no single equation of the above nine
can the desired relation be determined, and there 1is
but one combination of two equations which will give
1t; viz., (5) a® = hy; (7) b® = h® - hy; adding these
gives h? = a® + p?. ’

This is the shortest proof possible of the

" Pythagorean Proposition.

b. Since equations (5) and (7) are implied in
the principle that homologous sides of similar tri-
angles are proportional it follows that the truth of
this important proposition is but a corollary to the
more general truth--the law of similarity.

c. See Davis Legendre, 1858, p. 112,

Journal of Education, '1888, V. XXV, p. hok,
fig. V.
Heath's Math. Monograph 1900 ‘No. 1, p.
" 19, proof III, or any late text on
geometry. ,

d. W. W. Rouse Ball, of Trinity College, Cam-
bridge, England seems to think Pythagoras knew of
this proof.

!

2nd.--0ther Solutions

a. By the law of combinations there are pos-
sible 20 sets of three equations out of the six dif-
ferent equations. Rejecting all sets containing (5)
and (7), and all sets containing dependent equations,
there are remaining 13 sets from which the elimina-

“tion of x and y may be accomplished in 44 different
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ways, each giving a distinct proof for the relation

h® = a® + b2, . \
;“ b. See the American Math. Monthly, 1896,

V. III, p. 66 or Edward's Geometry, p. 157, fig. 15,

Two

Produce AH to C so that CB
) will be perpendicular to AB at B.
€ - Denote BH,-HA, AB, BC and
R CH by a, b, h, x and y resp'y.
The triangles ABH, CAB and

tB BCH are similar,

A From the continued propor-
tilonb : h:a=a:x:y=h:hb

'Fig. 2 _ + ¥ ¢ x, nine different simple pro-

portions are possible, viz.:

(1Y v : h=a:x (7)) a2 : x=h:Db+y.

(2) b s'a =a:y. (8)a:y=nh: x.

(3) h : a =x: y. (Y x :b+y=1y: x, from

()b :h=h:b+y. which six different

(5) b : a=h: x equatlions are possible

() h : a=b+y : x. as in One above.

Ist.-~Solutions From Sets of Two Equations
: a. As in One, there is but one set of two
equations, which will give the relation h® = a® + b2,
b. See Am. Math. Mo., V. III, p. 66.

2nd.--Solution From Sets of Three Equations

a. As in 2nd under proof One, fig. 1, there
are 13 sets of three eq's, giving 44 distinct proof's .
that give h® = a? + p2, "

b. See Am. Math. Mo., V. III, p. 66.

c. Therefore from three similar.rt. “tri's so
related that any two have one side in common there
are 90 ways of proving that n°® = g2 + p2.
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Take BD = BH and at D draw

C { CD perp. to AB forming the two simi-
& d lar tri's ABH and CAD.
A B a. From- the continued propor-
tiona : xX=b : h=h : b - x the
Fi&.B simple proportions and their result-

ing eq's are:
(1Y a : x=Db : h -a .. ah - a2 = bx,.
(2 a : x=h :b-x . ab - ax = hx.
(3) b : h -a=h:b-x. b% - bx =h® - ah.

As there are but three equations and as each
equation contains the unknown x in the 1lst degree,
uhere are possible but three solutions giving h?
= af + b? ;
) L. See Am. Math. Mo., V. III, p. 66, and
Math. Mo., 1859, V. II, No. 2, Dem. Fig. 3; on p. 45
by Richardson.

: In Fig. 4 extend AB to
C making BC = BH, and draw CD
perp. to AC, Produce AH to D,
forming the two similar tri's
ABH and ADC. A

From the continued pro-
portion b : h +a =48 : X
= h : b + x three equations are
Fig. b . possible giving, as in fig. 3,
three proofs. .
a. See Am. Math. Mo., V. III, p. 67.

Five

n Draw AC the bisector of the
A J angle HAB, and CD perp. to AB, form-
' D ing the similar tri's ABH and BCD.
Fig. 5 Then CB = a - x and DB = h - b,
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From the continued proportion h : a - x
=a :h-bs= b’ : x three equations are pos31hle Ziv-
ing, as in fig 3, three proofs for h? = a + b2,
" a. Original with the author, Feb. 23, 1926.

-~

.

e
=

Through D, any pt. in either
E leg of the rt. triangle'ABH, draw
\ DC perp. to AB and extend it to E a
\ - pt. in the other leg produced, thus
forming the four similar »rt. tri's
ABH, BEC, ACD and EHD.  From
B the continued proportion (AB = h)
: (BE = a + x) : (ED = v)
Fig. 6 : (DA =1b - y = (BH = a) : .
(BC = h - 2z) (DH=y) : (DC = w)
= (HA = : (CE = v + w) (HE = x) (CA = z),
-eighteen simple proportions and elghteen different
equatlons are possible.

"From-no single equatlon nor from any set of
two eq's can the relation h® = a2 + b2 pe found but
from combination of eq's Involving three, four or
five of the. unknown elements u, w, X, y, Z, solutions
may be obtained. )

1st.==Proofs Prgm Sets Involving Three Unkhown Fle-

/// ments

a. It has been shown that there is possible
but one combination of equations involving but three
-of the unknown elements, viz., x, y and z which will
give h® = a2 4+ p2

. b. See Am. Math. Mo., V. III, p. 111.

2nd.--Proofs From Sets Involving Four Unknown Ele-
mentsg

a. There are possible 114 combinations in-
volving but four of the unknown elements each of
which will give h® = a2 + p2,

- b. See Anm, Math.‘Mo., V. III, p. 111.
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3rd.--Proofs From Sets Involving All Five Unknown

Elements ) :

" a. Simllarly, there are 4749 combinations in-
volving all five of the unknowns, from each of which
h® = a® + b® can be obtained.

. See Am," Math. Mo., V. III, p. 112,
¢c. Therefore the total no. of proofs from.
the relations involved in filg. 6 1s 4864,

%poduce AB to E, fig. 7,
and through E draw, perp. to AE,
the 1line CED meeting AH pro-
.duced in C and HB produced in D,
forming the four similar rt.
tri's ABH, DBE, CAE and CDH.

« a., As in fig. 6, eigh- , -
teen different .equdtions are

possible rrom which there¢ are
i also 4864 proofs.
AN 'D b. Therefore the tota%

. ] no. of ways of proving that h" .
v ‘ Fig. 7 ‘= 8% +'v® from 4 similar rt.
) tri's related as in fig's 6 and

7 is 9728, :

. ¢, As the pt. E approaches the pt. B, flg. 7
approached fig. 2, above, and becomes fig. 2, when E
falls on B,

d. Suppose E falls on AB so that CE cuts HB
between H and B; then we will have 4 simlilar rt. tri's
involving 6 unknowns. How many proofs will result?

Eight

In fig. 8 produce BH to D, making BD = BA, '
and E, the middle pt. of AD, draw EC:parallel to AH,’
and join BE, forming the 7 similar rt. triangles AHD,
ECD, BED, BEA, BCE, BHF and AEF, but six of which

:
E
3
r
\
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need consideration, since tri's BED .
and BEA are congruent and, in sym-

,p, bolization, identical.
, {')? See Versluys, p. 87, fig. 98,
Ek Hoffmann, 1818, '
/ From these 6 different rt.
A B triangles, sets of 2 tri's may be 7
selected in 15 different ways, sets
Fig. 8 of 3 tri's may be selected in 20

different ways, sets of 4 tri's may
be selected in 15 different ways, .sets of 5 tri's may
be selected in 6 different ways, and sets of 6 tri's
may be selected in 1 way, giving, in all, 57 differ-
ent ways in which the 6 triangles may be-combined.
But as all the proofs derivable from the sets
of 2, 3, 4, or 5 tri's are also Tound among the
proofs from the set of 6 triangles, an investigation
of this set will suffice for all.
' In the 6 similar rt. tri's, let AB = h, BH
=a, HA = b, DE = EA = x, BE = Y, FH = z and BF = v,

whence EC = g, DH="h - a, DC = h ; 2 EF = y - v,
h + a
BE = T AD = 2x and AF = b - z, and from these

‘data the continued proportion is

b:b/2:y: (h+a)/2:a: x
h-a:(h-a)/2:x:1b/2: 3 : v - v

=2x : X :h:yiv:b - z,

From this continued proportion there result
45 simple proportions which give 28 different equa-
. tions, and, as groundwork fr.r determining the number
of proofs possible, they are here tabulated.

()b :b/2=h-2a: (h - a)/2, where 1 = 1., Eq. 1.
(2) b : b/2 = 2x : x, whence 1 = 1. Eq. 1.
(3 h - a : (h - a)/2 = 2x : x, whence 1 = 1, Eq. 1%
Y b : y=h - a x, whence bx = (h - a)y. Eq. 2.
b
h

(5) = 2x : h, whence 2xy = bh. Eq. 3.
(6) :* X = 2x : h, whence 2x® = h® . ah. Eq. 4.

D eqdeq
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(7Y b : (& +h)/2="h - & : b/2, whence b2 = h? _ a2
' Eq. 5. S »
(8) b : (h+ a)/2 = 2x : ¥, whence (h + a)x‘= by.-
Eq. 6.
(9) h - a : b/2 = 2x : ¥, whence bx = (h - a)y.
Eq. 2
(10) b : a=h - g : z, whence bz = (h - aYa. Eq. 7.
(11) b : a = 2x : v, whence 2ax = bv, Eq. 8.
(12) h - & : z = 2% - v, whence 2xz = (h - g)v, Eq. 9.
(13) b : x=h - a : Y - v, whence (h - a)x = b(y - v).
- Eq. 10,
(1) b : x = 2x : b - 2, whence 2x2 = b2 bz. Eq. 11.
(15) h -a : y'- v = 2% : b - z, whence 2(y - v)z
= (h - a)(b - z). Eq. 12.
(16) b/2 : y = (h - a)/2 : x, whence bx = (h -~ a)y. o
Eq. 2. T ~ , )
(17) v/2 : vy = x : h, whence 2xy = bh Eq. 3. '
(18) (h - a)/2 : x'= x : h, whence 2x% = h? _ ah,
Eq. 42, : .
(19) n/2 (h +a)/2 = (h - a)/2 : b/2, whence b2 : 1
= h® - a2, Eq. 5%, SR
(20) b/2 (h +a)/2 = x : vy, whence (h'+ a)x = by.
Eq. 6. )
(21) (h - a)/2 : v/2 = x : ¥, vhence bx = (h - a)y.
Eq. 2%, _
(22) b/2 : a = (h - a)/2 : z, whence bz = (h, - a)a. y
Eq. T2. : :
(23) b/2 : a = x : v, whence 2ax = bv. Eq. 82, \
(24) (h - a)/2 : 2 = x . v, whence 2xz = (h - a)v. S _ ,

. Eq. 9%, . A !
,§25),b/2,; x= (h - a)/2 ; ¥y .- v, whence (h - a)x - \ .
’ = b(y - v). Eq. 10%2. ‘ 4
(26) b/2 : x =% : b - z, whence 2x% = b2 . pgz, ;

Eq. 112,
(27) (h - a)/2 Y-Vs=2x1:Db -2z, wvhence 2(y - v)x
(h - a (b - z). Eq. 123, N
(28) (h + a)/2 X .t b/2, whence (h + a)x = by.
Eq 6°. | , .
(29) y : (h + a)2 =1 ¥, whence 2y® = h® + gh, |
Eq. 13. N \
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(30) x : b/2 = h : y, whence 2xy = bh. Eq. 3°.

\J1) ¥y : a =x: z, vhence ax = yz. Eq. 14.

(32) y : a = h : v, whence vy = ah. Eq. 15.

(33) x : z =h : v, whence vx = hz. Eq. 16.

(34) y : x =*x : y - v, whence x2 = y(y - v). Eq. 17.

(35) ¥y : x=h : b - 2, whence hx = y(b - z). Eq. 18.

(36) x : y ~v=h:Db - 2z, whence (b - z)x B
= h(y - v). Eq..19. .

(37) (h + a)/2 : a = b/2 : z, whence (h + &Yz = ab.
Eq. 20.

(38) (h + a)/2 : x =y : v, whence 2ay =" (h + a)v.
Eq. 21,

(39) /2 : 2 = y : v, whence 2yz = bv. Eq. 25.

(40) (h + a)/2 : x = b/2 : y - v, whence bx = (h + a)
(y - v). Eq. 23, ,

(41) (h + a)/2 :'x =y : b - z, whence 2xy = (h + a)
(b - z). Eq. 2%4. :

(42) b/2 : y - v =1y : b - z, whence 2y(y - v) = b

b® - bz. Eq. 25. : ‘ :

a(y - v). Eq. 26.

(43) a : x =2 : y -~ v, whence xz =
(44) 2 : x = v : b - z, whence vx = a(b - z). Eq. 27.
(45) z : y - v=v : D - z, whence v(y - v)

ib - z)z., Eq. 28.

The symbol 2*, see (21), means that equation
2 may be derived from 4 different proportions. Simi-
larly for 62, etec. ) \

Since a definite mo. of sets of dependent equa-
tions, three equations in each set, 1s derivable from
8 glven continued proportion and since these sets
must be known and dealt with in establishing the no.
~ of possible proofs for h® = a2 + b2, it becomes nec-
essary.to determine the no. of such sets. In any
continued proportion the symbolization‘fgr the no. of

‘ 2
such sets, three equations in each set, is £L4£§i4ll

in which n signifies the no. of simpie ratios in a
member of the continued prop'n. Hence for the above
continued proportion there are derivable 75 such sets
of dependent equations. They are:

H

....

i
i
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proofs may be possible from sets of equations involv-
ing x and y, x and z, x and V, Yand 2z, y and v, 2z
and v, X, y and z, Xx, y;gnd vV, X, zand v, ¥y, 2 and v,
and x, ¥y, 2z and v. d

+ Ist.-~Proofs From Sets Involving Two Unknowns

a. The twogunknowns, X and y, occur in the
following five equations, viz., 2, 3, 4, 6 and 13,
from which but one set of two, viz., 2 and 6, will
give h® + a® = b2, and as eq. 2 may be derived from

-4 different proportions and equation 6ITom 3 differ-
ent proportions, the no. of proofs from this set are
12, - . -

Arranged in sets of three we get,

2%, 3%, 13 giving 12 other proofs;
(2, 3, 4) a dependent set--no proof;
2%, 4=, 13- giving 8 other proofs;
(3, 6, 13) a dependent set--no proof;
®, 43, 6° giving 18 other proofs;
c 42 63 13 glving 6 other proofs;
33, 42 13 giving 6 other proofs.

L Therefore there are 62 proofs from sets in-
volving x and y. . C .

. b. Similarly, from .sets irvolving x and z
there are 8 proofs, the equations for which are Y, 7,
11, and 20. _ _ L
~ ¢, Sets involving x and v éive)nb additional
proofs. - \ ' )
B d. Sets involving y and z give 2 proofs, but

the equations were used in a and b, hence cannot be
counted again, they aré 7, 13 and 20. ‘ S
' e. Sets involving y and v give no proofs, K
f. Sets™Involving z and v glve same resulté
as d. ' A "
, Therefore the ng. of proofs from séts involv-
ing two unknowns 1s 70, making, in all 72 proofs so
‘far, since‘h2\=aaa + b2 1s obtalned directly from two
different ,prop'sy ‘ |

1

¢
S
sy ,

-
oF
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2nd.——Proofs From Sets Involving Three Unknowns

a. The three unknowns X, y and z occur in
the following 11 equations, viz., 2, 3, 4, 6, 7, 11,
13, 14, 18, 20 and 24, and from these 11 equations

y ‘ sets of four can be selected in 1%'E§' 9f 8 _ 330

ways,*each of which will give one or more proofs for
h® = a® + b2, But as the 230 sets, of. four equa-
tions each, include certaln sub-sets heretofore used,
certailn dependent sets of three equations each found
among those inf%he above 75-sets, and certain sets of
four dependent equations, all these must be deter-
- mined and rejected; the proofs from the remaining
sets willl be proof's additional to the 72 already de- -

termined. \
° Now, of 11 consecutive things arranged in
. sets of 4 each, any one will occur in 10 '; . 8 or

120 of the 330 sets, any two in —[:f- or 36 of the
330, and any three 1n-§,' or 8 of the 330 sets There-

‘Yoo . fore any sub-set of two equations will be found in
’36 and any of three equations in 8, of the 330 sets.
" But some one or more of the 8 may be some -one
/' or more of the 36 sets; hence a sub-set of two and a
. sub-set of three will not necessarily cause a reJec-
/ tion of 36 + 8 = 44 of the 330 sets.
The sub-sets which gave the 70 proofs are:

/ 2, 6, for which 36 sets must be rejected; .
, . ‘ 7, 20, for which 35 sets must be rejected, since ]
- o 7, 20, 1is found in one of the 36 sets above; :
2, 3, 13, for which 7 other sets must be rejected,
; since - ' \ ‘ . y‘
Co2, 3, 13, is found in one of the 36'sets above;
2, 4, 13, for which 6 other sets must be rejected;
3, 4, 6, for s/ich 7 other sets must be rejected;
4, 6, 13, for which 6 other sets must be rejected;
3, 4, 13, for which 6 other sets must be rejected;
b, 7, 11, for which 7 other sets must be re jected;

and ~
L 2 U S . H - p /
. A
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4, 11, 20, for which 7 other sets must be rejected;
for all of which 117 sets must be rejected.

Similarly the dependent sets of three, which
f are 2, 3, 4; 3, 6, 13; 2, 7, 14; 6, 14, 20; 3, 11,
18 6., 11, 24 and 13, 18 24; cause a rejection of
6 + 6+6+6+8+ 7T+ 8, or 47 more sets.
" Also the dependent sets of four, and not al-
ready rejected, which are, 2, U4, 11, 18; 3, 4, 7, 14;
3, 6, 18, 24; 3, 13, 14, 20; 3, 11, 13, 24; 6, 11,
13, i8 and 11 14, 20, 24, cause a reJection of 7
more sets. The dependent sets of fours are discovered
“as follows: take any two dependent sets of threes
having a common term as 2, 3, 4, and 3, 11, 18; drop
the common term 3, 8nd write the set 2, 4, 11, 18; a
little study will disclose the 7 sets named as well
as other sets already reJected, e.g., 2, 4, 6, 13,
g Re jecting the 117 + #9 + 7 = 171 sets there remain
i 159 sets, each of which will give one or more proofs,
. determined as follows. Write down the 330 sets, a'
] thing -easily done, strike out the 171 sets which must
: be reJected and, taking the remaining sets one*by
s one, determineé how many proofs each will give, e. g s -~
take the set 2, 3, 7, 11; write it thus 2* , 3° , 7 s .
112 the exponents denoting the different proportions
: from which the respective equations may be derived;
L the product of the exponents, 4 x 3 x 2 x 2 = 48, 1is
the number of proofs possible for that set. The set
. 6%, 112, 18, 20* gives 6 proofs, the set 141; 18, ,
e 201 ot gives but' 1 proof; etc. I , \
The 159 sets, by investigation, give 1231 ‘

.
o AP - T N

proofs.
" b. The three unknowns X, ¥ and v occur in the
, following twelve equations,--2, 3, 4, 6, 8, 10, 11, '.— /
i 13, 15, 17, 21 and 23, ‘which give 4os different sets \ - N
‘ ‘ of 4 equations each, many of which.must be re jected . .

- for same reasons as in .a.  Having established a method N !
"~ in a, ‘we leave detalls to the one interested '
s c. Similarly for proofs from the elght” equa-

tions containing X, 2z and v, and the seven eq's con-

taining y, z and v.
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3rd.--Proofs From Sets Involving the Four Unknowns
X, Y, z and v. ‘

a. The four unknowns occur in 26 equations,

hence there are 6, 23 . i; 23 . 22 = 65780 different

sets of 5 equations each. ReJecting all seéts con-
taining sets heretofore used and also all remaining
sets of five dependent equations of which 2, 3, 9,
19, 28, 1s a type, the remaining sets will glve us
many additional procfs, the determination of which
involves a vast amount of time and labor if the. .meth-
od given in the preceding pages 1s followed. If there
be a shorter method, I am unable as yet, to discover
1t; neilther am I able to find anything by any other
investigator.

4th.--Spectal Solutions

a. By an inspection of the 45 simple propor-
tions glven above, 1t 1s found that certain propor-
tions are worthy of special consideration as they -
glve equations from which very simple solutions fol-

low.
From propertions (7)7&hd" (29) h® = a® + b2

~follows immediately. ‘Also from the pairs (4) and
- (18), ‘and (10) and (37) . solutions are readily ob-
- talned. .

b. Hoffmann%ssolution.
* Joh. Jos. Ign. Hoffmann made a collection of

32 proofs, publishing the same in "Der Pythagoraische

Lehrsatz," 2nd edition Mainz, 1821, of which the so-
lution from (7) 1s one. He selects the two triangles,
(see fig. 8), AHD and BCE, from which b : (h + a)/2
=h - a : b/2 follows, giving at once h® = a? # b2
See Jury Wipper's 46 proofs, 1880, p. 40, fig

41, Also see Versluys, 'p. 87, fig. 98, credited to

Hoffmenn, 1818, Also see Math. Mo., Vol. II, No. II,
pP. 45, as given in Notes and Queries Vol. 5, No. 43,
P. b, -

Similarly from the two' triangles BCE and
ECD b/2 : (h +a)/2=(h-a)/2:1b/2, h?® = a2 + b2,

RS,

-1
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Also from the three triangles AHD, BEA and BCE pro-
portions (4) and (8) follow, and from the three tri-
angles AHD, BHE and BCE proportions.(10) and (37)
give at once h® = a® + b2, :

See Am. Math. Mo., V. III, pp. 169-70.

Nine

Produce AB to any pt.
D. From D draw DE perp. to

z’:\ AH produced, and from E drop
H,‘vw: AN  the perp. EC, thus forming
y} X the 4 similar rt. tri's ABH,
A ’:C l\\:D- AED, ECD and ACE,

, From the homologous
: sides of these similar tri-'
Fig. 9 = angles the following con-
- tinued proportion results:

(BH=Db) : (AE=Db+v): (BC=w): (AC=nh + x)
= BH=a): ME=y): (CD=12z) :. (BC =w) . s
(AB=h):AD=h+x+2):(DE=y): (AE=Db + v).
Note--B and C do not coincide, ~:* -

. a, From this continued prop'n 18 simple pro-
Lp@rtions are possible, giving, as in fig. 6, several
thousand proof's.

b See Am, Math. Mo., V. III, p 171.

In fig. 10 are three siml-
$E lar rt. tri's, ~ABH, EAC and DEF,
E\ ! from wvhich the continued propor-

(HA =Db) : (AC\=h + v)
: (DOF = DC = x) '
= (HB = a) (CE = y)
Fig. 10 : (FE=12)= (AB=nh)
(AE=h+v+2z): DE=y - x)

o
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follows giving 9 simple proportions from which many
more proofs for h? = a2 + p2 may be obtailned.
a. See Am, Math, Mo., V. III, p. 171.

L ‘ Eleven

, \\\ From D in HH, so that DH
i ' | = DC, draw DC par. to HB and DE perp.
' . , to AB, forming the 4 similar rt.
\ : tri's ABH, ACD, CDE and DAE, from
' which the continued proportion

1 " BH=a): ((D=DH=v): (EC = y)
¥ : PE=x)= (HA=Db) : DA =Db.- v)
- : ‘ ' . Fig. 11 : DE =x) = (AE=2)= (AB = h)

: : (AC=2 +y):(CD=v):(AD =D - v)

follows; 18 simple proportions are possible from i
. B which many more proofs. for h® = a® + b2 pesult.
: By an inspection of the 18 pvoportions it is
evident that they give no simple equations from which
easy solutions follow, as was found'in the investiga- -
tion of fig. 8, as-in a under proof Etght. : _ 1
* . . &. See Am. Math, Mo., V. III, p. 171. :

\

The construction of fig. 12
gives five similar rt. triangles,
which are: ABH, AHD, HBD, ACBand

|
BCH, from which the continued -
- prop'n

. 3 - (BH =’a) : (D = x) : (8D = y) 1 J

. Fig. 12 : (CB = 3?2) : (CH = —?—cx,’) = (HA = b) B

: DA =h -y): (DH = x) (BA h) (H:B: a)
L - = (AB=h): (AH=Db) : (HB =a) :(AC=,b'+%{z) ) 1
a2 . x e ‘

(BC = < |
i
1

|
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follows;, giving 30 simple proportions from which only
12 different geguations result. From these 12 equa-
tions several proofs for h? = a® + b? are obtainable.

: a, In fig. 9, when C falls.on B 1t is obvious °

that the graph become that of fig. 12. Therefore,
the solution of fig. 12, is only a_particular case of
fig. 9; also note that several of the proofs of case
12 are identical with those of case 1, proof One.

b._The above 1s an original method of proof
by the author of this work.

Thirteen

Complete the paral. and draw
- HF perp. to, and EF ,par. with AB
\ _resp'ly, forming the 6 similar tri's,
_ BHA, HCA, BCH, AEB, DCB and DFE, from
A wvhich 45 simple proportions are ob-

% I" tainable, resulting in several thou-

v 2

i\;’;F sand more possible’ proof for h? a
o+ b2, only oné of which we mention
Fig. 13 ' (1) From tri's DBH and BHA,

DB : BH = a)= (BH = a) : "(HA =b); ~DB = ibﬁ

and (2) HD : AB=h) = BH=a) : (HA = b);
. ah .
~HD = =~ .
(3) From tri's DFE and BHA, )
DF : (EB - DB) (BH = a) : AB = h),
F . w2 _ 8%, _ (b
or DF : b - 5 a : DF a bh
(4) Tri. ABH = ; par. ='—2' AB.x HC = = ab

— i

- 5[ AC + CF)] _ -I-[AB(M
- 13 o )]

_ah®  ab  a® | ah2 + ab® - a°
4b+4-4b_"(5)2*ab- 4o -




40 THE PYTHAGOREAN PROPOSITION i

wvhence (6) h® = a2 + b2,
a. This particular proof was produced by
Prof, D. A, Lehman, Prof. of Math. at Baldwin Uni-
“versity, Berea, 0., Dec. 1899,
b. Also see Am. Math., Mo., V. VII, No. 10,
" p. 228,

NGy

\ : . L Take AC and AD = AH
. ‘ ' and draw HC and HD. ‘
~ : ‘ Proof. Tri's CAH and
. ' C{/ 3 HAD are 1isosceles. Angle CHD
, : — is a rt. angle, since A 1is
‘ \ equidistant from C D and H.
Fig.lk Angle HDB = angle CHD
. + angle DCH. LT
= angle AHD + 2 angle CHA = angle CHB,
. tri's HDB and CHB are ‘similar, having an-
‘ gle DBH in common and angle DHB = angle ACH.
L .CB : BH = BH : DB, or h+b:a=a:h-b,
/- Whence h? = a2 + b2, h
/ - a&. See Math. Teacher, Dec., 1925, Credited
/" to Alvin Knoer, a Milwaukee High School pupil; also
// Versluys, p. 85, fig. 95; also Encyclopadie der Ele-
’ mentar Mathematik von H. Weber und J. Wellstein,
/ Vol. IT: p. 242, whére, (1905), it 1is credited to
. Cn/ Sterkenburg

’ ' Fifteen
/- In fig. 15 the const's is
l /// obvious giving four similar right
1 ‘ triangles ABH, AHE, HBE and HCD,
. from which the continued proportion
1 A ‘(BH = a) : (HE = x) : (BE = y)
‘ ‘ : (CD=y/2)=(HA=Db):(EBA=h - y)
L Fig. 15 : (BH =x) : (DH = x/2) = (AB = h)
I f (AH=Db): (HB£a): (HC = a/2)
} \‘ follows, giving~18 simple proportions.
! i
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. : Voo
a. From the two.simple proportions
(1) a:y=h: a and /
(2) b :h-y="h: Db we get easily h® = a2 + b=,
b. This solution i3 original with the author,
but, like cases 1l and 12 1t is subordlnate to case

i 1 L]

c. As the numbgr of ways in which three or
more simllar right tpiéﬁgles may be constructed so
as to contain related lipear relatlions with but few

runknowns involved 1s unl ‘mited, so the number of pos-

sible proofs therefrom must be unlimited.

» Sixteen o

The two followlng proofs,

H ~ differing so much, in methed,. from
' those preceding, are certainly
» worthy of a place among selected
A J* proofs.
Fig. 16 1st.--This proof rests on the

axiom, "The whole is equal to the

sum of 1ts parts." \ \

Let*AB = h, BH = a and HA = b, in the rt. tri
ABH, and let HC, C belng the pt. where the perp. from
H intersects the line AB, be perp. to AB. Suppose
h? = a? + 2. If h® ="a? + b2, then a2 = x% + y?
and b2 = x2 + (h - )3, or h?2 = x2 + y® + x®*+ (h-y)2
=y*+2x* + h-y)2 =7 +2yh-y)+ (b -7y)®
vy +[h - y)]1®
“h=y+ (h-1y), L.e., AB = BC + CA, which

i1s true. , :

' . the supposition is true, or h® = a® + b?
- | a. This proof is one of Joh. Hoffmenn's 32

proofs. ~See Jury Wipper, 1880, p. 38, fig. 37 .

i e

e

2nd. --This proof is the "Reductio ad Absurdum'
proof. .

e

h?® <, =, or >-(a® + b?). Suppose it 1s less.




«
«

et
R

/
- II,\'H

42 THE PY‘I‘HAGOREA!?\PROPO,SITION.

Then, since h® = [(h Py) + y]2 + Kh.- y) + x2
+ (h -y)2 and b2 = [ax + (h - y)]3, then
[(h-y)+x + (h - y)° < [ax +(h-y)]2+a
“[x2+ (- y)2]2< 8%lx® + (h- 3)%.
«» 82> x%® + (h-- y)%, which 1s absurd For,
if thérsupposition be true, we must have a2 ¢ x®
+ (h - y) , as 1s easily shown.
Similarly, the supposition that K2 > a2 + b3,
will be proven false.
Therefore it follows that h? = a2 + b2,
a. See Am. Math. Mo., V. III, p. 170..

e -

e

Take AE = 1, and draw EF
“ perp. to AH, and HC perr. to AB.

(AC x F'E)/FE BC-= (HC x FE)/AF
A (ﬁ : (AC x FE)/AF x FE/AF = AC x FEZ/AF%

) ”andAB AC x CB = AC '+ A FEZ/AF"”
Fig. 17 = AC(1 + FE2)/AF? = AC (AF2 + FE)Z/AF"’
(x).
But AB : AH = 1 : AR, whence AB = AH/AF, and’
= AC/AF, Hence AB = AC/AF2. (2).
% AC (AF? + EF?)/AF? = AC/AFZ .. AF? + FE® ="1,

SWAB : 1 =AH : AF. .. AH = AB x AF., (3). .

and BH = AB x FE, (u) ~ "

(3)2+ ()2 = (5)%, or, AH® + BH® = AB® x AP® + AB®
x FE2 ABZ(AF +F‘E2) = AB2. . AB® HB2 + HA%, or
h? = a2 + b2 ’ ;
a. See Math. Mo., (1859), Vol. II, No. 2,
Dem. 23, fig. 3.
b. An iandirect proof follows It is:
If AB? # (HB2 + HA?), let x
GﬂBa + HAz)Ilz . HA(l + HBZ/HAa)llz =
+ FE2/FA2)*/2 HA[(FAZ + FE2)/FA%]%/2 = HA/FA
AB, since I{B *AH = 1 : AF.
1fx-AB ~x2 = ABZ = msznm2 Q.E.D.
* . ¢. See said Math. Mo., (1859), Vol. II, No. 2,
Dem. 24, fig. 3.

= HB2 + HA? then -

o

P

s 0 k-
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Eighteen , | l
- . _Prom sim. tri's ABC and BCH,
HC = a®?/b. Angle ABC = angle CDA
= rt, ahgle. From sim. tri's AHD- -
and DHC, CD = ah/b; CB = CD. Area o
. of tri, ABC on base A€ = 3 (b+a3bla. -
Area of ACD on base AD = % (ah/b )n.

- Fig. 18 - . (b'+.a%/b)a = ab®/b = % + a%)/b
R ab? + 83 ~ : o
_ ooxa= T L
- o.o h2-=82 + b2. ; ’ _ R . '.;‘, ’
ST a. See.Versluys, P. T2, fig._79. f T
- 5 L .
;o Nineteen v

Tri's 1,
2 and 3 are sim-
1lar. From tri's
1l and 2, AC
L S = h®/a, and CD
: Xy = hb/a. From
'

"tri's 1 and 3,

A ¥
o . .EJ N \ EF = ha/b, and
4 - L—. - o o L b | FB = ha/b‘ / e
“7 R (i 124 Rl
r‘ Fig. 19 - = tris 1 + trio

! T 2 + tri.- 3 + sq.

t:;

S0'3(a + B3/ o + n%/a) = %ab + %h (b/a ) + 3h®(a/b)
+ h2, or a®b® + 2abh® + h* = a®b? + h%a + h?b + 2abh2,
or h* = h%a® + n®»2; . h% = a2 + b2, Q.E.D.

a. See Versluys, p. 23, fig. 80. ‘

Twenty

- Draw HC perp. to AB and = AB, Join CB and
CA. Draw CD and CE perp. resp'y to HB and HA,
- - . - ,;

<0 ' ,
i -
4 -.
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= ab + 3 (AB =

- ‘a,

oI/ -

Ct--,--SD

Fig. 22

A CD)(AG+ ®) =
s ab + 3h® = ab + %a® + $b%, .~ 1%
: See Versluys, P. 74,

Area BHAC = area ABH
4 area ABC = 3h2. But area tri.
CBH.= 482, and of tri. CHA = b2,
- $h2 = ia + 42, .~ h? = a% + b2,
p See Versluys, p. 75,
f1g. 82, wheg'e ¢redited toP. Armand
Me:er, 1876.

HC = HB = DE; HD = HA. Join

”G,EA_and..EC,,_ Draw. EF and HG perp. to

AB and EK perp. to DC.

. ~ Area of trap. ABCD ;“; rea.
(ABH + HBC + CHD + AHD) = ab + 1a
+ 4%, (1)

= srea (EDA + EBC + ABE + CDE)
= ¥ab + $ab + (FAB X EF = $AB x AG
as tri's BEF and HAG are congruent)
ab + 3H%. (2)
='a® + p2,
rig. 81.

Q.E.D.

-~

. 22, 1t 1s‘obvious
that: :

(1) Tﬁi ECD = $h®, (2) Tri. DBE

= 58 . (3) Tri, HAC = gbz'
coa (1) = (2) +7(3) = (4) 4n® = ia®
: + %b ~h® = a® + b2, Q.E.D.

a. See Versluys, p. 76, fig.

8}, credited to Meyer, (1876), also

this work, p. 181, fig. 238 for a
similar geometric proof.

pUIpISReRs——y S el o
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i\ IWeatz:Iuez \ .

For figure, use fig 22 above, omitting lines
EC and ED.- Arsa of sq. AD-= (2 area of tri. DBH
= rect. BF) + (2 area of tri. HAC = réct. AF)
=2 x3a% +2 x40 = a® + b2 = h?, : h? = &2 + b2, >
Or use similar parts of fig, 315, in geometric proofs,
a. See.Versluys, p. 76, proof_66, credited
to Meyer's, 1876 collection. o

T"!ﬂ!!'FQQV

In fig. 22, denote HE by x. Area of.tri. ABH

e e e

'erea~of—~sq~m-=—§hxw+-h=~=~_area~ £ (tre ACH ¥ trL:

+ 3hx + %aZ®,

to AH and = to HB.

R S

CDH + tri. DBH) = 3b® + %h(h + x) + %a = .4b2 + ih?
“h¥ = a? % pE

a. See Versluys, p. 76 proof 67, and there
credited to P. Armand Meyer s collection made 1n _
—1876.— } : r ToTTr o

b.'Proofs Twenty-Two, Twenty-Three arnd Twenty-
Four are only variations of the Mean Proportional
Prineiple,--see p. 51, this book.

—

IwentyiFive

At A erect AC = to, and
perp. to AB; :and from-C drop (CD’
= AH) perp. to AH. Join CH, CB and
DB. Then AD'= HB = a;, Tri, CDB
= tri. CDH =:4CD x DH,
Tri. CAB =tri. CAD + tri.
DAB + (tri. BDC = tri, CDH = tri.
CAH + tri. DAB) 5 3h? = 3a® + 12,
% h® = a2 + b
a. See Versluys, p. 77, fig 84, one of
Meyer's, 1876, collection.

Fig. 23
*

Lo - Iweaty=3ix
] Join
to HA, and cD parallel
‘ Join CF and BD

"From A draw AC perp. to, and = to! AB,
CB and draw BF parallel and =

e
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TF., cm trd, BAPF + tric = | |
 PAC + trl, CBF = tri. BAF 4 tri, FAC :
+ tri. FDB (since tri. ECF = trrﬁ .
EDB) = tri, FAC + tri. ADB J‘;h
ss}a + 6%, o b2 = a® + b®

a. See Versluys, P. 77, fig. !
35, ‘being -one of Meyer'a*\_o—llection. :

v . PRI
RS .

E A.ﬂ,.x - / i
S - * ’

Gy
A

‘ ““’ stntx.nnn ' )

b . o - FromA draw AC perp.- to, - -3
4 ' N - and = to AB. From C draw CF équal , ' _—
o .- to HB and parallel to AH. -Join CB;

- A B AF and HF and drav BE parallel to -

' . HA, CF =EB = BH = a. ACF and ABH

by . are congruent; so are CFD and BED.

T ) \\ s Quad. BHAC=tris BAC# tri.

‘ "? ABH = tri. EBH + tri. Iﬁm+tr1 ACF
v ,_+tri FCD + tri, DBE. J‘;h2+§ab !
‘ B (%a +§b2+§ab A hz,‘=a + b2 |

Fg. 25-. Q.E.D, . . )

a. See Versluys, p. 78, fig.
 86; also see "Vriend de Wiskunde," 1898, by F. J. “

Vaes. ] \

| Twenty=Eluht

e

Draw PHK perp. to AB T
and make PH = AB’ ‘Join PA,
" PB, AD and @B.

Trits BDA and BHP are
congruent $-80 are tri's GAB: "¢
and AHP. Quad. AHBP = tri. ,
 BHP + tri, AHP, . #h® = }a®
4 3b2, . h2? = 4 b2, Q.E.D.

a. See Versluys, p. 79,
fig 88. Also the Scientifique
Revué Feb. 16 1889, H. Renan;

monm—y




-

e el

Py

ALGEBRAIC PROOFS 47

- also Fourrev, p. 77 and p. 99,--Jal de Vuibewt 1879-
8C.

<+

-Izéntz:!ins

Through H draw PK perp. to
AB, making PH = AB, and Join PA and
' P‘ f.‘)‘,‘ PRA Y ey R — A

‘ 'Since}area AHBP = [area PHA

+ area PHB = 3h x AK + 3h x BK
‘= 3h(AK + BK)-="3h x/h = in?] = (area
AHP + area BHP = 3b%/ + aa) s 3h?
= 3a® + 302, . hz‘“fa + b

a. See Versluys, Dp. 79, fig.
89, being gne of Meyer s, 1876, col-

lection.

Thirty

e e e ——

3

-

N Draw PH perp. to AB, making .
H = CD = AB. Join PA, PB, CA and
CB. L
Tri. ABC = (tri ABH .+ quad
AHBC) = (quad AHBC + quad. ACBP),
since PC = HD. In tri. BHP, &ngle

HBD). So the alt. .of tri. BHP from
the vertex P = a, and 1ts area = %a%;
likewlse tri. AHP = §b2 But as in
fig 27 above, area AHBP = 3h®. . h?
-7 = a? + b®. Q.E.D. .
a. See Versluys, p. 80, rig. 90, as one of
Meyer's, 1876, collections.

--tz:Que

Tri's ABH and BDH are similar, so DH = a2/b
and DB = ab/h. Tri. ACD = 2 tri., ABH + 2 tri. DBH.

[y

o st

BHP = 180° - (angle BHD.= 9o° + angle.

‘e

™y

e

&
&
¥
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surdity.
Q.E.D.

C:

'\. -e W e

)

Pig. 30
7
> h? or h?

Similarly, 1f a2 + b"’ < h"’

THE PYTHAGOREAN PROPOSITION

Area of tri. ACD = ah?/b
= area-of 2 tri. ABH + 2 tri. DBH

=a.b+a.’/b~ ~ h? = a2 + b2, Q.E.D.
a. See Versluys, p.f87, fig,
gl. . .
. - 1'
Ihir t! TNQ

proof--sep proof Sixteen above.

| - Suppose a2 + b2 > hz.','Thén,
y A02+p > b2, anch"’+p > a2,

hother Reductio ad Absurdum o

e~

A02+CBz+2p > a2 + b2 > nZ, As
2p 2(AC x BC) then AC2 + CB® + 2AC

_ch>a + b2, or (AC + CB)% > a2

or h® > .h%, an_ ab<
h2 = a2 + b2,

> a2 +b"’>h

a. See.Versluys, p. 60, fig: 64.

.‘ §;,F.' ik
HE"

Fig. 31 - _

Sq. AD = (area of 4 tri's
= 4 x tri. ABH + area of 8q. KF)
A4 x4ab + (b - a)® = 2ab +'b?

- 2ab + a® = a® + b%, . '

a. See Math. Mo., 1858-9;
Vol. I, p. 361, and it refers to
this proof as given by Dr, Hutton,
(Tracts, London, 1812, 3 Vol., 800 )
in his History of Algebra.

e

[

- b2 = a2 + b2,
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o

¢ . Thirty-Foyr ‘ |

. Let BH = x, and HF = y;
then AH = x + y; sq. AC = § tri..

ABH + sq. HE = 4[511_;_2).] +

2xy + y° = x° + 2xy + y*®

y)2 + x2, ‘.. sq. on AB

+ sq. of BH. . h?

.- Q.E.D. , -

. a\_ This proof is due to )

" Fig. 32 | Rev J. G. Excell, Lakewood,.O.
- i July, 1928; aIso given by R. A.

Bell, Cleveland, }0., Dec. 28, 1931. And it appears

in "Der Pythagoreisch Lehrsatz" -(1930), by Dr. W.

Leitzmann, in Germany

S e e e e e

H , ' \
In fig. 33a, sq. CG
= 8sq. AF + 4 x tri, ABH = h®
+ 2ab. ---(1)

. In fig. 33b, sq. KD
= sq. .KH + sq. 'HD + 4 x tri, \ >
ABH = a® + b® + 2ab. ---(2)

But-sq. CG = sq. KD, by
“const'n.. . (1) = (2) or h®
“+ 2ab = a® + b + 2ab. . h?

=-a% + b2, Q.E.D.

) a. See Math. Mo., '
1809, dem. 9, and there, p.- .
159, Vol. I, credited to Rev.

A. D. Wheeler, of Brunswigk,

-Me.; also see Fourrey, p. 80

fig's a and b; also see "Der o

Pythagoreisch Lehrsatz"

(1930), by Dr. W. Leitzmann.-

b. Using fig. 33a, a

second proof is: Place 4 rt,

triangles BHA, ACD, DEF and

FGB so that their legs form a
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4
1 - v - ; I
. v

.o ' square whose side is HC., Then.it 18 plain;that: - ; s

1. Ares of sq. HE = a® + 2ab + b2, P P
2. Area of tri, BHA = ab/2, o o
_ . 3. Area of the 4 tri's = 2ab. | >
’ 4, Area of 8q. AF = area of sq. HE - area of the ¥ ? '
" tri's = a® + 2ab + b® - 2ab = a® + b2,
5. But_apés -of 5q. AP = hZ2, -
6. ~h¥*=a" + v%, Q.E.D.

e - This proof was devised by Maurice Lalsnez, a \ 4
high school boy ' in the Junior-Senior High School of - T
“8outh Bend, Ind., and sent to. me, May 16, 1939, by
his class teacher, Wilson Thornton,

e -

Inlrtyzsiy

I Sq. AE = sq. - 4ABH.
‘ = (a + b)2 - 2ab; and h2 = sq.
NH + 4ABH = (b - a)2 + 2ab,
Adding, 2h? = (a +b)2 )
+ (b - a)2 =-2a% + 2b2, . n?
= a® + b2, Q.E.D. -
a. See Versluys, p. 7o,
fig. 78; also given by Saunder--"
son (1682 1750); also see
Fourrey, p. 92, and A. Marre.
"Also assigned to Bhasgkarg, the _ -
Hindu Mathematician, 12t% cen- -
tury A.D. Also said to have '
been known in China 1080 years
before the ‘time of Christ., -

i

- Thirty=-Seven

‘ Since tri's ABH and CDH are similar, and CH
3 .= b - a, then CD-= h(b - a)/b, and DH = a(b: - a)/b. .

- Draw GD. Now area of tri. CDH 2( =a) xa( -a)h

- %a(b - a)%/p. n--(l) ’

$

v ey
>

[
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= ‘ ;
i ‘ ~ ‘Area of tri. DGA = 3GA x AD = 3b
- ,/\\F - X [132 - i(.b—h;ﬂ] g‘.;.‘ .%['ba _a(b_a)]
Y (2)

3

Area of tri, GDC'= }h b'; a)h
_ n2(b -8y .
— = (= ) ---(3)
V 538:\35 .. drea of sq. AF (l) + (2) + (3)
+ tri, GCF = ga(b -“a)2/b
+ 3[p2 - a(b Za)] + 3030 - a)/b + %ab = ba, which
reduced and collected gives h®(b - a) - (b - a)a
= (b -a)p® .~ h®=a®+Db% Q.E.D.
. a. See Versluys,  p. 73-4%, solution 62,
b. An Arabic work of Annairizo, 900‘N 3. has

a similar proof. . -
c. As last 5 proofs. show, figures for geo-

>

e P

e — e

~*~metrICMproof*arerigures‘for algebraic proofs also. T
Probably foér° each geometric proof there~i§ an algea
"~ braic proof
B.--The Neah Proportional Frinciple

The .mean proportional principie leading to
equivalency of areas of triangles and parallelograms,
is very rrolific in proofs,

, "By rejecting all similar right triangles
other than those obtained by dropping a perpendicular
from the vertex of the right angle to the hypotenuse
of a right triangle and omitting all equations re-

* ~sulting from the three similar right triangles thus
‘formed, save c¢nly equations (3), (5) and (7), as
given in proof ‘One, we will have limited our field
greatly.. But in this limited field-the-proofs possi-
ble are many, of which a few very interesting ones
ﬁill now be 'given.

In every figure under B we will let h = the

"-hypotenuse, a-= the shorter leg, and b = the longer
leg of the given right triangle ABH.

-

i

1y




—

!
l
5
i
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Fig. 36

= a® + p®

B2 T THE PYTHAGOREAN PROPOSITION ~ -
Th 1 rty-Eight
3 .‘ H Since AC : AH = AH: AB, AH2
= AC x AB, and BHZ - BC x BA. Then
A BH2 + HAz (AC + CB)HB = ABZ2, h2

a. See Versluys, p 82 fig.
92, as glven by Leonardo Pisano,
1220, in Practica Geometriae; Wallils, Oxford, 1655;
Math:. Mo. 1859, Dem. 4, and credited to Legendre's

‘Geom.; Wentworth's.New Plane Geom., p. 158 (1895);

Jr.k_ O,

B

“also Chauvenet's Geéom., 1891, p. 117, Prop. X.

Dr. Leitzmann's work (1930), p. 33, fig. 34
"Mathematics for the Million," (1937), p. 155, fig.
51 (1), by Lancelot Hogben, F.R.S.

G\’

Fig. 37

k

Ihlztx:ﬁlug « -

3Alsq'“

Also

Extend AH and KB to L,

paral. AGDL = a2 + b2,
a2 + b2,
a. See Versluys, p. 84,

Q.E.D.

through C draw CD par. to AL, AG
perp. to CD, and LD par. to HB,

FDLH

and extend HB to'F. 7
BH® = AH xHL = FH x HL =
=l a®, 8q. AK = paral. HCEL

'ha-

fig. 94, as given by Jules
~Cam%7s, 1889 in S. Revue

/Eerty
CD par.

= + rect.

EF + EHZW'

!

Draw AC.
to BA)
HE and BF. -

Tri, ABC =

= rect. BD =

k4 * L

Through

BD, . sq. BG =

/

s sy

C draw

&nd the perp's AD,

1 sq. BG

sq EF + rect ED
= sq. EF + (EA x ED = EH2)
But tri's ABH and BHE

=sq

A




are similar. ., if in tri. BHE, BH® = BE® + EH2,
then in 1ts similar, the tri. ABH, AB2 = BHZ + HAZ,
.~ h% = a2 + b2, . Q.E.D.

a. See Sci. Am., Sup., Vol. 70, p. 382, Dec.
10, 1910, fig. T--one of the 108 proofs of Arthur E.
Colburn, LL.M., of Dist. of Columbia Bar.

.~ Eorty-One

Const'n obvious. Rect.
LF = 2 tri. FBH + 2 tri. ADB
= 8q. HD = sq. LG + (rect. KF
= KC x CF = AL x LB = HL?)
= s8q. LG + HL2, -
) But tri's ABH and BHL

‘h . ALGEBRAIC PROOFS.__ .. Y S

' ) ) are similar. Then as in fig. 36,
' Ke A h? = a% + b2, o

N A 8. See Sci. Am. Sup., V.
. :

]

Eorty-Two .
Construction as in fig.

x BG = AB x BC = BH2, And AB

X AC = AH?, 'Adding BH? + AHZ

= AB x BC + AB x AC = AB(AC + CB)

= AB®, . n? = a2 + b2, Q.E.D.

_ &. See Wipper, 1880, p.
Fig. 4o 39, £ig." 38 and there credited to

: - .o Oscar Werner, as recorded in
"Archiv. d. Math. und Phys.," Gruhert, 1855; also see
Versluys, p. 64, fig. 67, and. Fourrey, p. 76. ;

N
N\,
N

W 70, p. 359, one of Colburn's 108,

38. Paral. BDKA = rect. AG = AB :
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Eorty-Three

Two squares, one on AH
const'd outwardly, the other on
‘HB overlapping the given triangle.
Take HD = HB and cons't
rt. tri. CDG. Then tri's CDH and
ABH are equal. Draw.GE par. to -
AB meeting GKA produced at Ei—— —
. Rect. GK = rect. GA + sq.
= (HA = HC)HG + sq. HK = HD?
+ sq. HK. ’
| Now GC: DC =
- . DC2 = GC x CE =

c:am;Gm

HK + sq. DB = AB2, . h® = a® + b2, "

1910.

a. Seé Sci. Am, Sup., V. 70, p 382 Dec. lO
Credited to A. E. Colburn.

- ’-

1910.

geometric, rather than an algebraic proof. E.~S.

Loomis.

.-a. See 8ci. Am. Sup., V. 70, p. 382,-Dec. 10,

§
rect. GK = 8q. ?
i

Forty-Four

AK = sq,'on AB. -
Through G draw GD par. to HL- -
and meeting FL produced at D
and draw EG.

i Tri. AGE 1s common to
sq. AK and rect.AD. . tri.
AGE = % sq. AK = % rect: AD.

- sq. AK = rect. AD. Rect. AD
. = 8q. HF + (rect. HD. = sq. HC,;
see .argument 'in proof 39).

8q.. BE sq. HC + HF, or h?

= a® + b2,

Credited to A. E. Colburn. B
b. I regard this proof, wanting ratio, as a

il.

z ’,’:a




o Aqufic PROOFS . &%
Eorty-Fjve
HG = sq. on AH. Extend

- KB to M and through M draw ML
par. to HB meeting GF extended
at L and draw CM.

Tri. ACG = trl., ABH.
Tri. MAC =.4 rect. AL = 1 sq. AK.
* 8q. AK = rect. AL = sq. HG +°

. (rect; HL = ML.x MH).= HA x HM
= HB? = sq. HD) = sq. HG + sq. HD.
s~ h% = a2 + b2,

a. See Am, Sci. -Sup., V.
70 p. 383, Dec. 10, 1910. Cred-
ited to A. E. Colburn.

| FortysSlx o

- ,,_a.-‘.—m-w "

. s

| S

A

TR TR

Extend KB tg'o In HE.
Through 0, and par. to HB draw
"NM, making OM and ON each =
HA. Extend GF to N,. GA to L,
making AL = to AG and draw CM,

‘Tri. ACL = tri. OPM
tri. ABH, and tri., CKP
tri. ABO.

- & rect. OL = sq:-AK,
having polygon A.LPB in common.
~ 8q. AK = rect. AM = sq. HG
+ rect. HN = sq. HG + sq. HD;
see proof Forty-Four above.

'~ h® = a® + b2 Q.E.D..
" a, See Am, Sci. Sup.,

V. 70, p. 383, Credited to
* A. E. Colburn.

to
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Forty-Seyen

Transposed sq. LE = sq. on
AB. ‘

Draw through H, perp. to

AB, GH and produce it to meet MC
produced at F. Take HK = GB; and
through K draw LN par. and equal
to AB, Complete the trangposed
sq. LE. Sq.:LE = rect. DN + rect.
DL = (DK x KN = LN x KN = AB x AG
= HB®) + (rect. LD = paral. AF
= 8q. AC) for tri, FCH = tri. RMA
. and tri. CPR = trl, SLA. .. sq.LE
=HBa+sq. AC, or h® = a2 + p?

. a, Original with the author of this work,
Feb 2, 1926 .-

- Fig. 45

L.
-

S Eorty=Elght

SR ) ' Construct °
tri. BHE = tri. BHC
and tri. AHF = tri.

F. H, and E draw the

and EL each.= AB,
and complete the
rect's FK and ED,
and draw the 1. s

HD. and HK.
. PFg. k6 , " Tpi, HKA
_ =3 AK x AF = 4 .AB
x AC - # AH2, Tri, HBD = % BD x BE = 4 AB % BC = 3

'HB®. Whence AB x AC = AH? and AB x BC = HB®, Add-

_AHC, and through pts.

line GHL, making FG

ing, ve get AB XAC+AB x BC =

AB(AC + BC) = AB3,

or ABZ = BHZ + HAZ2,

hzsa + b2

e.f. Original with the author, discovered Jan.
31, 1926.

|
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" Forty-Nine“

- Construction. Draw HC, AE - >
and BF each perp. to AB, making each
equal to AB. Draw EC and FCD. Tri's

_ABH ,and HCD are equai~and similar.

Y - Figure FCEBHA = paral CB

' + paral, CA = CH'X'88 + CH x GA
| = AB X GB + AB X AG = HB? + HA®

- .1 = AB(GB + AG). = AB X AB.= ABZ,

N NF a. See Math. Teacher, V. XVI,

_ - 1915. Credited to -Geo. G: Evans, o

Fig. 47 - . Charleston High School Boston, Mass,; ' e
also Versluys, p. 64, fig. 68, and

. P. 65, fig. 69, also Journal de Mathein, 1888, - ) »

F. Fébre; and fourd in "De Vriend der wirk, 1889, i .o

- by A. E. B, Dulfer, _ _

EiLfty

. I am giving this figure
of Cecil Hawkins as it appears
- in Versluys' work,--not reduc- .
ing it to my scale of h =-1", _ ,
) Let HB' = HB = a, and hat -
HA' = HA = b, and draw A'B!' to °
"D in AB.
Then angle BDA' 1s a rt,
angle, ‘since tri's BHA and.B'HA'
.- are congruent -having base and.
- altitude of the -one res'ly perp. '
- to base.and alﬁitude of. the other.’
Now .tri. BHB' + tri. AHA' = tri BA'B' + tri.
K AB'A' = :tri, BAA' - tri. BB'A. . % &2 + 4 b2
'/~ = 4(AB XA'D - (AB X B'D) = Q[AB‘(A'B" + B'D)]
- 3(AB. x B'D) = 4 AB x A'B! + 3 AB * B'D - 2 AB x B'D
"= 4 AB xA'B' = 3 h xh-&h’. .hz-a. + b2,
Q.E.D.

" a. See Versluys, p. 71, fig. 76, as given by
Cecil Hawkins, 1909, of England.
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Eifty-0One

Tri. ACG = tri. ABH.
: s 8q. HG = quad. ABFC = .
L Since angle BAC = rt. angle.
A :k?E» . tri. CAB = #h?. . b2=quad.’
\
RN
[
'

\ ABFC = $h® + tri. BFC = 4h® »
\ +3(® +a)b-a) ---(1) i
»°D 8q. HD = sq. HD'. Tri. OD'B
/ - = tri,-RHB. .. sq. HD'= quad.
> BRE'O = a2 + tri. ABL - tri.
AEL. ~ a®=3h -3(b + a)
(b -8a). -=-(2) (1) + (2)
. ‘ = (3) a® +b2= 3n® + 4n® = 1%,
» h® = &% + b2, Q.E.D.
. ~ Or from. (1) thus: %h ¥ %—(b +a) - a) = 4
T T " . = 3b% + ih - }a. Whence h® = a® + b2 ;
' . a. See Versluys, p. 67, fig. 71 as one of ‘ ]
Meyer's collection, of 1876,

S o  Eifty-Tug

i ‘ ‘ : ' - Given the rt. tri., ABH.
- Through B draw BD = 2BH and par. -
H to AH. From D draw perp. DE to AB. )
Find mean prop'l between AB and AE -
A, “B which 1s BF. From A, on AH, lay
Pid - off AT = BF. Draw TE and TB, form-
; ”~ - ‘ing the two similar tri's AET and
. ATB, from which AT : TB = AE : AT,
’ 5 or (b ~a)? = h(h - EB), whence
i | ‘. =[h- (b-a)/b ---(1)
S /h—~ JZ* . Also EB : AH = BD : AB.
- ; "~ EB = 2ab/h. ---(2) Equating (1)
i " Fig. 50 ' and (2) gives'[h - (b - a)%)/h -
' S = 2ab/h; whence gz =.a2 + b2,
a. Devised by the author, Feb. 28, 1926.
’ o - b. Here we introduce the circle in finding
- ' the mean proportional.

R . i [ N Ve
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Elfty-Three

An indirect algebraic
proof, said to be due to the
great Leibniz (1646-1716).

If. (1) HA® + HB2 = AB®,
then (2) HA® = AB® - HBZ,
vhence (3) HA® = (AB + HB)
(AB - HB).

Take BE and BC each
equal to AB, and from B as.
center describe the semicircle

‘ . CA'E. Join AE and AC, and
il drawv BD perp. to AE. Now (4)
4 - - TFig, 51 HE = AB + HB, and (5.) HC = AB

# e

HAa, which 1s true only vhen triangles AHC and EHA
are similar.du, .
(6) angle CAH = angle AEH and so (7) HC
¢ HA = HA : HE; since angle HAC ='angle E, then angle
GAH angle EAH., .. angle AEH + angle EAH = 90° and
angle CAH + angle EAH = 90°, .. angle EAC = 90°. .

' vertex A 1lies on the semicircle, or A coincides with
A'. . EAC is inscribed in a semicircle and is a rt.
angle. Since equation (1) leads through the data de-
rived from it to a rt. triangle, then starting with
such a triangle and reversing the argument we arrive
at h? = a2 4+ p2,.

: a. See Versiays, p. 61, fig. 65, as given by -

'~ von Leibniz.

CEifty-Four

Let CB = x, CA ="y and HC

" u N
o
+
o
!
I
N
+
N
o]
D <

- HB. (4) x (5) gives HE x HC
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b

a. This proof was sent to me by J. Adams of
The.Hague, Holland. Received it March 2, 1934, but
the author was not given.

Eifty-Eive 7
‘ Assume (1) HB® + HA2 = ABZ,
" Draw HC perp. to AB. Then (2) AC®

= + CH? = . (3) CB® + CH2 = HB’
A (4) . Now AB = AC + CB, so (52
~ = AC® + 2AC x CB + CB® = AC® + 2302
Fig. 53 + CB%, But (6) HC® = AC x CB. ..
: (7) AB® = AC® + 2AC x CB + CB? and
(8) AB = AC + CB. . (9) AB®'= AC® + 2AC x CB + CB2,
(2) + (3) (10) HB2 + HA*[: AC? + 2302 CB2, or
(11) AB? = HB2' + HA® ,(12) h® = a? + bz. Q.E.D.

- a., See Versluys, p, 62, fig. 66.

br.bjl‘_his_prooﬂ is one._oLHoffmann*s,JBIB,h_col-
lection. \

- Co==The Ctrclc itn Connecttow with the Rttht Trtangle

(I).--ThrOQgh the Use of Onel Circle

From certain Linear Relations of the Chord,
Secant and Tangent in’conjunotion with a right tri-~
‘angle, or with simi;arwnelatod right triangles, 1t
may also be proven that: The;aquare of the hypotenuse

"of a right triangle ts- equalfto the sum of the squares

of thenother two stdes.
And since the algebraic is the measure or

" transliteration of the geometric square the truth by

any proof through the algelralc method involves the

- truth of the geometric method.

Furthermore these proofs through the use of
circle elements are true, ﬂot because of straight-
line properties of the .cir rcle, but because of the law
of similarity, as each proof may be reduced to the
proportionality of the homologous sides of similar
triangﬂes, ‘the circle- -being a factor only in this,

that the homologous angles are measured by equal arcs.

\

¥
i

T —1
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« (1) The Method by Chords.

Eifty-Six

!
| )
| : H is any pt. on the semi-
§ circle BHA. .7 the tri. ABH 1is a rt.
- triangle. Complete the sq. AF and -
* draw the perp. EHC. ) L
BH? = AB x BC (mean propor- |
_ tional) ‘ : Y :
AH2 = AB x AC (mean propor- . T
tional) _—
: S3q. AF = rect. BE + rect. AE = AB x BC
Fig. 54 + AB x AC = BH® + AH2, . h® = a°
+ b2, . ‘
a. See 3ci., Am. Sup., V. 70, p. 383, Dec. 10,
1910, Credited to A. E. Colburn.
'b. Also by Richard A. Bell,--given to me Feb.
28, 1938. He says he produced it on Nov. 18, 1933,

- ’ Fifty-Seven-
' Take ER = ED and .
Bisect HE. With Q as cen-
ter describe semicircle

AGR. Complete sq. EP.

Rect. HD = HC x HE = HA

x HE = HB® = sq. HF. EG .

1s a mean proportional be-
‘tween EA and (ER = ED).

* 8q. EP = rect. AD = sq.

AC + sq. HF., But 4B is a
mean prop'l between.EA and
(ER !hED)' . EG = AB,

L Lt ) sq. BL = sq. AC + sq. HF.’
- , R - h® + a® + b2, .

- ' Fig. 55 a. See Sci. Am.

F ] . o Sup., V. 70, p. 359, Dec.

i [ 3, 1910. Credited to A. E, Colburn.

i
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ELfty-Ejght

In any circle upon
any diameter, EC in fig. 56;
take any distance fromthe
center less than the rddius,
as BH. At H draw a chord
\ AD perp. to the diameter,
+ and join AB forming the rt.
"~ © ) tri, ABH. -
/ "~a. Now HA x HD = HC !

~ N\ '/" XI-IE orbaa(h-t a)(h-a)

NN Zh® ¥ a® + bt
‘\\“--')c/‘ b. By joining A and
' c, “and E and D, two similar

: Fig. 56 . rt, tri's are formod giv- ,
) ing HC : HA = HD : EE, or, ’
o~ / , again, b2 = (h + a)(h - a). . h2='a,2+b
A S “’“‘""BUt by*:]oining ‘Cand D the tri. DHC = tr.;.

- AHC, and since the tri. DEC 1s a particular case of
One,' fig. 1, ‘as 1s obvious, thé above proof is sub- -
. ordinate to, being but a-panticu;ap—ease—ef—the—preef
of, One.

c. See Edwards' Geometry, p. 156, fig. 9,
and Journal of Education, 1887, V. xxv, p. 404, fig.
VII.

” o | Elﬁ!!:ﬂf_'!

With'B as center,
and radiug = AB, describe
circle AEC. . ‘ ) N

, Since CD is a mean :
proportional between AD and
DE; and as CD = AH, b2

(h - sg(h +a)= - a%,
 _ a

: : a. See,Jougnal of
R BN .+° - Education, 1888, Vol. XXVIJ
- ( R « ‘ p. 327, 21st proof; also

o (o Fig. 7 Heath's Math. Monograph,

-
\
-
£
v S
f'*
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No. 2, p, 30, 17th of the 26 proofs there given.

b. By analysis and comparison 1t 1is obvious,
by substituting for ABN its equal, tri. CBD, that
above solution 1s subordinate to that of Fifty-Six.

Sixty

'In any circle draw any

eter as BD, and join A and B,
- B and C, and C and D, forming
the three similar rt. tri's
ABH, CBH and DBC.
Whence AB : DB = BH
: BC, giving AB x BC = DB x BH
" = (DH + HB)BH = DH x BH + BH?
- . = AH x HC + BH®; or h? = a2
Teeeent ' + b2,
133.58 o —- ~ a. Flg. 58 is closely
related to Fig. 56,
b For solutions see Edwards' Geom., p. 156
fig. 10, Journal of Education, 1887, V. XXVI, p. 21,
fig. 14, Heath's Math. Monographs, No. 1, p. 26 and
Am, Math. Mo., V. III, p. 300, solution XXI.

ili&z:gis

Let H-be the center of a

— D" C “Teircele;and AC and BD two diameters -
: perp. to each other. Since HA = HB,

we have the case particular, same

as in fig.:under Geometric Solu-

tions. .
Proof 1. AB x BC = BH?

+ AH x _CH. » AB® = HB® + HAZ,

‘s‘..f" h2 - a 'i' b2 ,
Fig. 59 " Proof-2.- AB x BC = BD X BH

= (BH + HD) x BH = BH2 + (HD x HB
= HA x HC) = BH® + AH®. . h® = a® + b*

chord as AC perp. to any diam--
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‘a. These two proofs are from Math. Mo., 1859,
Vol. 2, No. 2, Dem. 20 and Dem. 21, and are applica-
‘tions of Prop. XXXI, Book IV, Davies Legendre, (1858),
P. 119; or Book III, p. 173, Exercise 7, Schuyler's
Geom., (1876), or Book III, p. 165, Prop. XXIII,
Wentworth's New Plane Geom., (1895).

b. But 1t does not follow that being true
vhen HA = HB, it will be. true when HA > or < HB. The

W,

author. , I

Sixty-Two

& ",/12"“‘-\ C At B erect a perp. to AB and
/N ,A® prolong AH to C, and BH to'D. BH
S04 = HD. Now AB? = AH x AC=AH(AH+HC)
= AH? + (AH x HC = HB®) = AH® + HB2. °
.~ h% = a® + b2, " Q.ED.
a. See Versluys, p. 92, fig.

4
L]
.
.
]
L
s

weeees ™ 105,

Sixty-Three

From the figure it
is evident that AH x HD
., =HC.xHE, or b®* = (h + a)
v (h-a)=n%_a%2 . n?
= a® + b2, Q.E.D.

. a. See Versluys, .
- R.-92, fig. 106, and credit-
/ ed to Wm. W. Rupert, 1900,

/ [
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Sixty-Four
o - ' With CB as radius
: describe semicircle BHA cut-

ting HL at K and AL at M,
Arc BH = arc KM. " .. BN = NQ
= A0 = MR and KB = KA; also
arc BHK = arc AMR = MKH = 90°
S0 tri's BRK and KLA are con-
gruent, . HK = HL - KLL = HA
- OA. Now HL : KL = HA : OA,

Fig. 62 =~ So HL - KL : HL = HA - OA :Hj,
o « -or .(HL - KU) + HL = (HA-OA)
(b-a)b., ~KQ=(HK ¢ NL)LP = [(b - &)+ b)]

. Now tri. KLA = tri. HLA - tri. AHK = b2
-%b x (b - &) = #ba = 3 tri. ABH, or tri. ABH

= trli, BKR'+ tri. KLA, whence trap. LABR - tri, ABH

= trap. LABR- (tri. BKR + tri. KLA) = trap. LABR
- (tri. HBR + tri. HAL) = trap. LABR - tri. ABK. ..
tri. ABK = tri. ‘HBR + tri. HAL; or 4 trir ABK = 4 tri
HBR + 4 tri. HAL. .. h® = a® + b2, Q.E.D. '

. a&. 3ee Versluys, p. 93, fig. 107.; and found
in Journal de Mathein, 1897, credited to Brand.

(10/23,'33, 9 p. m. E. S. L.).

” Sixty=Fjve

¥

From the similar triangles HDAfand
HBC, we have HD : HB = AD': CB, or
HD x CB = HB x AD, ---(1)

In like manner, from the
similar triangles DHB and AHC, HD"
x AC = AH x DB. ---(2) Adding (1)
and (2), HD x AB = HB X AD + AH
Fig. 65 ~  x DB. ---(3). . h® = a2 + b2’

a. Seée Halsted's Elementary.

~ Geom., 6th Ed'n, 1895 for Eq. (3), p. 202; Edwards'

Geom., p. 158, fig. 17; Am. Math. Mo., V. IV, p. 11.

»

fThe construction is oﬁ&iaﬁéli

'

.
i




IR

- 4
5 j
j 66 - THE PYTHAGOREAN PROPOSITION
‘ " =
' b. Its first appearance in print, it seems, ]
vas in Runkle's Math. Mo., 1859, and by Runkle cred- ' ‘ §
: ited to C. M. Raub, of Allentown, Pa.
; k c. May not a different solution be obtalned
f ‘ from other proportions- from these same triangles°
Sixty=$ix | ‘ g
Ptolemy's Theorem (A.D. 87-
168). If ABCD is any cyclic (in-
scribed) quadrilateral, then AD x BC
+ AB x CD-= AC x BD.
As appears in Wentworth'
) Geometry, revised edition (1895), -p.
\ Seee” 176, Theorem 238. Draw DE making
? Fig. 64 LCDE = LADB. ‘Then the tri's ABD and
# . CDE are similar;.also the tri's BCD
and ADE are similar. From these pairs of similar
triangles it follows that AC x BD = AD x BC + DC x AB,
" - (For full demonstration, see Teacher's Edition of
Plane and Solid Geometry (1912), by Geo. Wentworth
and David E. Smith, p. 190, Proof 11.)
’ ” In case the quad. ABCD be-
comes. a rectangle then AC = BD BC -
= AD and AB = CD. So Ac"’ - BC?
+ AD® , or c2 =a%2 +p2, .. & speclal .
¥ case of Ptolemy's Theorem gives a
.. ./ proof of the Pyth. Theorem.
ads a. As formulated by the. k
Jﬁg.6§-w~eauthor;“fAlso -see- "A Companton-to o
.+ . Elementary School Mathematics (1924), :
by F. C. Boon, B.A., p 107, proof 10. . ) ]
. L .
N
Sixty-Jeven :
Circumscribe ajout tri. ABH eircle BHA. Draw

AD = ‘'DB. Join HD. Draw CG perp. to HD at H, and AC
and BG each perp. to CG; also AE and BF perp. to HD,
Quad's CE and FG are squares. Tri's. HDE and

-

I - M
[
H
-
ld




kil dcabial
;o

O N

. o it A
e Kt .
=

ALGEBRAIC PROOFS = ' 67

DBF are congruent. . .. AE = DF = EH
= AC. HD = HF + FD. = BG + AC. Quad.
ADBH = 3HD (BF + AE) = 3HD x CG,
Quad. ABGC = % (AC-+-BG)- x CG = 4HD
x CG. . trl, ADB = tri. AHC + tri,
. -HBG. .~ 4 tri. ADB = 4§ tri. AHC + )4
tri. HBG: .. h® = a® + b2, Q.E.D.
a. See E, Fourrey s C. Geom.,
rig. 66 1907; credited to Piton-Bressant;
see. Versluys, p. 90, fig. 103.
b. See fig. 333 for Geom. Proof--so- called.

R Slsty-Elght

o Construction same as in
fig. 66, for points C, D and G.
Join DG. Prom H draw HE perp. to
__AB, and Join EG and ED. From G
~draw 0K perp. to HE and GF perp.
to AB, and-extend AB.to F. KF is

a square, with diag. GE. ... angle

.‘~\"#.f.’." . BEG = angle EBD = 45°, . GE.and
D BD are parallél, Tri. BDG = tri.
Fig. 67 BDB, ---(1) Tri. BGH = tri. BGD.

A --=(2) &)= (2), or tri. BGH
= tri. BDE. Also tri. HCA = tri. ADE, . tri. BGH

+ tri. HCA = tri. 'ADB. So 4 tri. ADB = 4 tri BHG
+'4 tri. HCA. .~ h® = a® + b2, Q.E.D.

a. Seée Versluys, p. 91, fig. 104, and crédit-
ed also to Piton-Breasant as found in E. Fourrey's
Geom-: 1907, p. 79, IX. '

" b. See fig. 334 of Geom. Proofs. °

ST T e st oo gl

P

"In fig. 63 above 1t 1s obvious that AB 'x 8BH
-AHxDB-i»ADxBH & AB® = HA? + HB2, ... h? = a2
+ b2

8. See Math. Mo., 1859, by Runkle, Vol. II,
No. 2, Dem. 22, rig. 11,
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b. This 1s a particular case of Prop. XXXIII,
Book IV, p.- 121, Davies Legendre (1858) which is Ex-
ercise 10, in Schuyler's Geom. (1876), Book III, p.
173, or Exercise 238, Wentworth's New Plane Geon.
(1895), Book IIL, p. 176.

Seventy
On any diameter as AE
= 2AH, const. rt. tri. ABH, and
produce the sides—to chords.
Draw ED. From the sim. tri's
ABH and AED, AB : AE = AH : AD,
orh:b+HE=Db:h+BD. .
h(h + BD) =b(b + HE = b® + b
, x HE = b® + HF x HC = b® + HCZ,
U A '=-=(1). Now conceive AD to're-
S =~ ¥ . volve on A as a center until D.
Fig. 68 ' coincides with C, when AB = AD
= AC = h, BD = O, and HB = HC
= a.. Substicuting in (1)-we have h® = a2 + b=,
’ a. This is the solution.of G. I. Hopkins of
Manchester, N.H. V,See his, Plane Geom.,, p. 92, art.
427; also see Jour. of "Ed., 1888, V. XXVII,.p. 327,
16th prob. Also Heath's Math Monographs, No. 2,
p. 28, proof XV, ,
. b Special case.. When H coincides with O wve
get (1) B M +c) - a)/h and (2) BC = 2b%/h - h.
Equéting, % h® = a% + b?
¢. See Am, Math, Mo., V. III, p. 300,

(2) The Method by Secants. .

Seventy-One
T With H as center and HB as radius describe ‘
the circle EBD. .
The secants and their external segments bring
reciprocally proportionel 'we have, AD : AB = AF : AE,

» o

DOy AT T T




,163, Wentworth's New Plane Geom. (1895)

+
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orb+a:hs=(h-2CB=h- 2; )
IR : b - &, vhence h? = g® + p2, |
/ v . a. In case b = a, the :

#  \ points A, E and P coincide and the
. Droof still holds; for substituting
/- b for a the~above prop n redudes to
°  n®:2a%=0; . ﬁ = 2a% as 1t
SR 2shou;d
Fig. 69 b. By joining E and B, and.
F and D, the similar triangles upon
which the above rests are formed.

Cnwr®

Seventy-Two

With H as center and HB as
radius describe circle ¥BD, and draw
s » .HE and HC to middle of EB.

' AE-x AB = AF x AD, or -
;/(AD 2BC )AB. = (AH HB)(AH+HB)
¢ % AB® , 2BC X AB = ,AH® - HB® And
asBC~BH BH : AB, thenBc,“AB v
» "= HB2, or 2BC x.AB = 2BH2...30,AB2 |
Pig. 70 - 2BH® = --BH2, -. AB® = HB?
C. + HA®, . h2=a +o Q.E.D.
a. Math. Mo., Vol II, No. 2, Dem 25, fig. 2, x

‘Derived from: . Prop. XXIX, Book IV, p. 118 Davies

Legendre (1858), Prop. XXXIII, Book ITI, p. 171, . :
Schuyler's’ Geometry (1876); Prop. XXI, Book I1I, p. ) -

o *

*§§¥:atzﬁlnnzé

, AE : AH'= AH : AD. ..
AH® = AE x AD = AE (AB x BH)

iD + BH® = AE x AB -+ AE x HB
;  +HB® = AE x AB + HB(AE+ BH)
= AB(AE + BH) = AB2, 4 n®

= a®’+ b2, Q.E.D.

8. See Math. Mo.,

L = AE x AP +AE x B S0 AR —— -

helS

2]
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(1859), Vol. II, No. 2, Dem. 26, p. 13; derived from
Prop. XXX, p. 119, Davis Legendre; Schuyler's Geom.,
Book III, Prop. XXXII, Cor. p. 172 (1876); Went- -
worth's Geom., Book IIT, Prop. XXII, p. 164, It is
credited to C. J. Kemper, Harrisonburg, Va., and Prof.
Charles A. Young (1859), at Hudson; 0. Also found
"in Fourrey's collection, p. 93, as given by J. J. I.
Hoffmann, 1821.. - x _ L

-

- Seventy=Four

In fig. 72 E will fall be- |
\ ' ' tw‘en.JL and F at F, or between F
,----P._ and B, as HB 1s less than, equal to,
c or greater than HE. Hence there . -
are three cases; but investigation
of one case--whenit falls at middle
point of AB--1s sufficient.-
Join L and B, and P a.nd——e———-~

‘;g...k‘)

-a:AF;:.u._T

‘ Join F and G, and B and D making the two sim- |
- 1lar tri's FGE and BDE, whence 3h : a - 4h = a + %h -

s FE, ‘vhence FE = 'héh --=(2). Adding (1) and

L e(2)

h2
(2) Bives 4h = o” + b; L-whence h2 = a2+ b=, .
a. The- above. .solution is given by Krueger,
in "Aumerkungen uber Hrn. geh. R. Wolf's Auszug aus
der .Geometrie," 1T46. Also see Jury Wipper, p. 41,
rig. 42, and Am. Math. Mo., V. IV, p. 1l. -
b. When G falls midway between F and B, then

Tig. T2 otcvmas—ftr69—Therefere—cases_69_and 72-

- making the two similar triangles :

are closely related. .
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Seventy=Five

T : v In fig. 733, take HF i
: = HB, With B as center, and K
BF as radius describe semi-
circle DEG, G being the pt.
where the circie intersects
AB. Produce AB to D, and
draw FG, FB, BE to AH pro-
duced, and DE, forming the
similar tri's AGF and AED,
from which (AG=x) : (AF=y)
= (AE=y + 2FH) : (AD=x .
+ 2BG) = y + 22z : x + 2r
whence x2 + 2rx = ¥° + 2yz. R
--=(1). . _ . , 4
S 7 But if, see fig 73b, :
Fig. 73b HA = HB, (sq. GE = h2?) = (mq.
' HB = az) + (¥ tri, AHG = sq.
HA = b?), whence n? = a® + b®; then, (see e 738)
_ vhen BF = BG, we will have BG® ‘= HB® + HF® , or r®
T ““‘f?“za‘“(sinne—trwriﬂf;. ---62).~~ S e
o . o (1) + (2) = (3) x®* + 2rx + r - §2 .+ 2yz ¥ z
o +2z20or () (x+2)2= (y+2)2+ 22 . (5) n
+ b2 , 8ince x + r = AB=h, y +2 = AH = b, and
Z=HB = a;
. .a., See” Jury w1pper, pP. 36 where Wipper also -
- credits it to Joh. Hoffmann. See also Wipper, p. 37,
rig. 34, for another-statement 6f same proof' and
" Pourrey, p. 94 for Hoffmann's proof.

-

: o | Seventr=sir —

_ : In fig. 74 in the circle whose center 18 0,

" A . and vhose diameter is AB, erect the perp. DO, join’ D

‘ ‘ ; to A and B, produce.DA to F, making AF = AH, and pro-

T * "duce~HB-to“G—making BG = BD, thus:forming the two -
. } isosceles tri's FHA and DGB; also the two 1sosceles ‘

= : | tri's ARD and BHS. As angle DAH = 2 sngle at F, and

“ ~angle HBD = 2 angle at G, and as angle DAH and angle

4
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~ HBD are measured by same arc
HD, then angle at F = angle.
at G, .. arc AP = arc QB.

And as angles ADR
and BHS have same measure, %
of arc™MPQ, and + of arc BQP,
‘respectively, then tri's ARD
and BHS are similar, R 1s the

Fig. 74 . intersection of AH and DG,

' and 8 the intersection of BD
and HF. Now since tri's FSD and GHR are similar, be=-
ing equiangular, we have, DS <« DF = HR : HG. .. DS

(DA + AF) = : (BB + BG)
. :.bs : (DA + AH) = HR : (HB + BD),
: (2BR + RH) = : (2B + 8D),,

(1) Ds? + 2DS x BS = HR2 + 2HR x BR.

Andn(2) HA2 (HR + RA)® = HR® + 2HR x RA + RA® = HR®
~ + 2HR x RA*+ AD?
(3) 1B® = BS® = (BD - DS)? = BD® - 2BD X DS + D82

= AD? . (ZBD x DS - D8%) = AD® - 2(BS + SD)DS +DS?
= AD® - 2BS x SD. - 2DS2 + DS2 = AD® . 2BS x DS

- D3? = AD® - (2BS x DS - DS2)
(2) + (3) = (¥) HB® + HA® = 2AD2 But as in proof,
fig 73b, we found, (eq. 2), r2 = z2 + z2 = 232,
-, 2AD® (in fig. 74) = AB2, .. h2 = a2 + b2,

a. See Jury Wipper, p. 44, fig. 43, and there:
credited to Joh. Hoffmann, one of his 32 solutions.

e

Seventy-Seven

In fig. 75, let BCA bé any triangle, and let
AD, BE and CF be the three perpendiculars from the. -
three verticles, A, B and C, to the three sides, BC,
CA and AB, respectively. Upon AB, BC and CA as diam—
eters describe circumferences, and since the angles

~-ADC, 'BEC and CFA are rt. angles, the circumferences

pass through the points D and E F and’ E and F and
D, respectively.

RV S
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Fig. T5a Fig. 75b &
, i
SinceBCXBD=BA><BF CBXCD =CA x CE, {
and AB X AF = AC x AE, therefore , i
[BC x BD. + CB XCD-BC(BD%-CD)—BCZ] i
= [BA x BF + CA x CE ="BA% + AB x AF + CA? + AC xAE g
=ABa+A02+2ABXAF(or2ACXAE)] B ;
© When the anglé A 1s acute (fig. T5a) or obtuse (fig. 4
T5b) the sign 1s - or + respectively. And as angle ;
A approaches 90° 'AF and AE approach 0, a.nd at 90°
they become 0, iand we have BC® = AB®'+ AC2. .. when
A = a rt. angle h® = a® + b2, ‘
a. See Olney's Elements of Geometry, Univers-
ity Edition, Part III, p. 252, art. 671, and Heath's -
Math. Monographs, No. 2, p. 35, proof XXIV.
Seventy-Eight
T e - - -~ -~ Produce KC and -
HA to M, complete the
rect. MB, draw BF par. to"
L AM, and draw CN and AP
‘P'..'.. - o6 ., ‘ > perp to m .
' SR “. ,/ ‘ Draw the semi-
' iNg « cirtle ANC on the dlame-
:’,# ‘,b' »{ ter AC. Let MN = x.
' L’ n -t Since the area of the
‘ K‘“‘“"“f"“'““'""k’,‘ paral. MFBA = the area of
the sq. AK, and since, by
Fig. 76 the Theorem for the .
{
' 4




<«

e A

" 108 solutions, being devised Nov. 1, 1922 ” .

*Q.E.D.

B

- 2br. But (2) a® = a®, (1) + (2) = (3) (h - a)z

\
\

T4 THE PYTHAGOREAN PROPOSITION

measurement of a parallelogranm, (see fig. 308, this

text), wve have (1) sq. AK = (BF x AP = AM x AP) ¢
= a(a + x). But, in tri. MCA CN 1s a mean propor-

tional between AN and NM. (2) b2 = ax. (1) - (2)

= (3) h® - b2 = a2+ ax - ax-a’. . h® = a2 +p2

a. This proof is No. 99 of A. R. Colburn's

(3) The Method by Tangents
1st.--Phe Hypotenuse ds a Tangent

. Seventy-Nine
. [P
) Draw HC perp. to AB, and : i
with H as a center and HC as s radi-
us describc circle GDEF ., - .
From the similar tri's; ACG
"and AEC, AC : AE = AG : AC or
AC':,b+r=b -r: AC; ~ (1) AC®
= b2 . .. From the similar tri's’
S CBD and BFC , we get—(2) - CB2-=—-al=p® 1~
Fig. T7 From the similar rt. tri's BCH and
I-ICA we get (3) BC x AC = r?

. (4) 2BC x AC = 2:-,. 2 + (2) + (4) gives (5) AC®
“+ 2AC x BG .+ BC® = a2 + b? = (AC + BC)? = AB®%, . n®
= a2 + b2, '

’ a. See Am. Math. Mo., V. III, p. 300.

Elghty

0, the center of the circle,
lies on the bisector of angle B, and
on AH.

With the construction cdém-
pleted, from the similar tri's ACD
" and AHC, we get, csalling OC = r,
Pig. 78 . (Ac-h-a)*"“(m-b)-(m b - 2:-2
o (Ac-h-a) . (1) (h -a)® =01

+a-a +b’-2br,or(h-a)+2br+a=a~+b L
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>

Also (AC = h -"a) : (AH = b)= (0C = OH ;'r) : (B = a),
vhencs :
(4) (h - a)a = br.

~ (5). a)2 + 2(h - a)r + 82 = a? + b2
. (6) h® = a® + b2, -
Or, in (3)Aabove, expand and factor gives
(7) h® - 2a(h —ﬁa) = a® + b2 - 2br. Sub. for

ath - a) 1ts equal, see (4) above, and collect,
we have

(8) h® = a2 + b2, _
a. See Am, Math Mo.,,V Iv, p 81.

—_— —— R SR

2nd ~-The . Hyvotenuse a Secant Which Pass-
es Through tﬁe Center of the Circle
and One or Both Legs Tangents

' : Elghty-0ne

Having HB, the shorter leg,
a tangent at C, any convenient pt.
on HB, the construction is evident.

From the similar tri's BCE
and BDC, we get BC : BD = BE : BC,
wherice BC® = BD x BE = (BO + OD)BE

Neaoet = (BO + OC)BE.---(1) From gimilar
Fig. 79 tri's OBC and ABH, we get OB : AB
‘ CB »r ‘
“‘ = 0C : AH, whence T - E@ .~ BO
= _l%r_ .---{2) BC : BH = 0C : AH, whence BC ;~%. -—-(3)
Substituting (2) and (3) in (1), gives,
br G—'+ 7 )BE = (hr + br)(BO - 0c) = (hr ;fhr)
(-Il—r—lJ;—f) -——(4) vhence h2 = a® + b?, Q.E.D.
a. Special case 1s: ,when, in Fig 79, 0 co-
incides with A, as in Fig, 80. .
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Eighty-Two

With A as center and
-AH as radlius, describe the

semicircle BHD. ‘

From the similar tri-
angles BHC and BDH, we get,
"h-b:a=4a:h+Db, vhence.
directly h® = a® + b2,

a. This.case is found
InTvHeé&th"'s Math. Monographs,
) No. 1, p. 22, proof VII; Hop-
‘ . Fg. 80 kins!' Plane Geom., p. 92, fig.
D ‘ o IX; Journal of Education, -
f .. 1887, V. XXVI, p. 21, fig. VIII; Am, Math. Mo., V. ‘
- . III, p. 229; Jury Wipper, 1880, -p. 39, fig. 39, where
he says 1t 1s found in Hubert's Elements of Algebra,
Wurceb, 1792, also in Wipper, p. 40, fig. 40,. as one
of Joh., Hoffmann's 32 proofs. Also by Richardson in
Runkle's Mathematical (Journal) Monthly, No. 11, 1859.
--one of Richardson's 28 proofs; Versluys, p. 89, n

fig. 99.
b. Many persons, 1ndependent of above sources,

havé found this proof.
: c.-When 0, in fig. 80, 1s the middle pt. of
AB, 1t becomes a special case of fig. T9.

. o

Elahty-Three - -

.Assume HB < HA, and employ ;
tang. HC and secant HE, whence HC?2
= HE x:HD = AD X AE = AG X AF = BF -

x BG = BC2 Now employing like argu-
ment as in proof Elghty-One we get

. iﬁ " h® = a? + b2
. Teeet a. When 0 1s the middle
: ‘ Fig. 81 . point of AB, and HB = HA, then HB
» ‘ * : and HA are tangents, and AG = BF, ¢

secants, the argument 1s same as (c), proof Eighty- _
Two, by applying theory of limits.
"~ b, When O 1s any pt. in 4B, and the two legs |

¥
P
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are tangents. This 1s only another form of fig. 79
above, the general case. But as the general case -
glves, see proof, case above, h® = a® + bZ, therefore
the special must be true, whence 1ln this case (c)

h? = a2 + b2, Or if a proof by explicit argument 1is
desired, proceed as in fig. T79.

Eighty-Four

By proving the general case,
as in fig 79, and then showing that
some case 1s only a particular of the
general, and therefore true lmmedl-

"ately, is here contrasted with the

. following long and complex solutlon

Teeeet of the assumed particular case.

Fig. 82 ~ The following solution 1s
. given ;n The Am. Math. Mo., V. IV,

p. 80: |
"Draw OD perp. to AB. _Then, AT? = AE x AF = A0% - E0?
= AO% - THZ.---(I) -
BP2 = BF x BE = BO® - FO2 = BO? - HP2,---(2)
Now, AO : OT = AD : OD;
s A0 x OD = OT x AD, . _
And, since OD = OB, OT = TH = HP, and AD = AT + TD
, = AT + BP. -
o AT x TH + HP x BP = A0 x OB,---(3)
Adding (1), (2), and 2 x (3), _
AT2 + BP2 + 2AT x TH + 2HP x BP = A02 - TH® + BO?
= .- HP2 + 2A0 x OB;
AT2 + PAT x TH + FHZ 4+ BPZ 4 2BP x HP + HP® = AO®
+ 2A0 x OB + BOZ. T
. (AT + TH)2 + (BP + CP)® = (A0 + OB)Z.
AH2 + BH2 = AB2," Q.E.D.
n-ha = a2 + b®, '
3rd.--The Hypotenuse a Secant Not Pass-

ing Through the Center of the Cir-
cle, and Both Leg¢s Tangents

e et o e e it A A e PN 0 0 e 3 b
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Elghty-Five

‘Throu’gh B draw BC paraliel
to HA, making BC. = 2BH; with 0, the
middle point of BC, as center, de-

. 3
v .: . ¢ scribe a circumference, tangent at
. : Ry ‘,‘ B and E, and dravw CD, forming the
% .°  two similar rt. tri's ABH and BDC,
*ese¢” ' vhence BD : (AH = b) = (BC = 2a)
Fig. 8 :
ig. 93 (AB = h) from which, DB = 3"-9 (1)

Now, by the principal of tang. and sec. relations,
! (AB® = [b - a]®) = (AB = h)(AD = h - DB), whence \

B=h _(b;a)._ »---(2)

Fquating (1) and (2) gives h2 = a2 + b2,
a. If the legs HB and HA a.re equal, by theory
of 1imits same result obtains.
< b. See Am. Math. Mo., V. IV, p. 81, Na. XXXII
' ¢c. See proof Fiftx-'l‘wo above, and observe
that this proof Eighty-Five 1s superior. to it.

-

4th.--Hypotenuse and Both Legs Tangents
Eighty-$ix
. * ' The tangent points of the

three sides are C, D and' E.
Let OD = r=0E=Oc,AB=h,

‘2 \B BH = a and AH =

¢ " Now, ~— !
. (1) h+2r =a + 0.
Fig. 8% . (2) h® + 4hr + 4r® = a2 +2ab=b2

(3) Now 1 bhr + L 2 = 2ab, then
- h? = a2 #d3 T
(4) Suppose 4hr + 4r2 = 2ab, =l
(5) 4r(h + r) = 2ab; . 2r(h + r) =.8b; , . ,
(1)=(6)2r=a+b -h.. (6) 1n (5) gives
(7) (a+b-,h).(h+r)=ab.0/ . |
: 4’ o |




ALGEBRAIC ~ROOFS | 79

(8) h(a +b - h.-r) + ar + br = ab. .
()= (9)r=(a+b-n- r) (9) in (8) gives
(10) hr + ar + br = ab. - ,
(11) But hr + ar + br = 2 area tri. ABC.
(12) And ab = 2 area tri. ABC.
“(13) it ¥+ aF ¥br =ab = hr + r(a +b) =
+r(h + 2r) ‘
s (14) #hr + 4r2 = 2ab.
-~ the - supposition in" (4) is true.
s (15) h® = a2 + b2, Q.E.D.
a. This solution was devised by the author
Dec. 13, 1901, before recelving Vol. VIII, 1901, p.
258, Am. Math. Mo., where a like solution 1is given,
also. see Fourrey, p. 94, where.credited.

b. By drawing a line 0C, in fig. 84, we have

the geom. fig. from which, May, 1891, Dr. L. A. Bauer,

of Carnegie Institute, Wash., D.C., deduced a proof

“through the equations -

(1) Area of tri ABH = %r(h +a +.Db), and

() HD + HE = a + b - h. See pamphlet: On
Rational Right-Angled Triangles, Aug., ‘1912, by —
Artemus Martin for the Bauer proof. In same peuphlet,
1s still another proof attributed to Lucius Brown .of
Hudson, Mass.

c. See Olney's Elements of Geometry, Universi-

-ty Edition, p. 312, art. 971, or Schuyler's Elements

of Geometry, p. 353, exercise 4; also Am, Math. Mo.,

V. IV, p. Le, proof XXVI; also Versluys, p. 90 fig.

*102; also Grunert's Archiv. der Mathein,~and Physik,
1851, credited to M8llmann. :

d. Remark, --By ingenious devices, some if not
all;—of—these—in-which -the-circle _has_been n_employed

"can be proved without the use of the eircle--not

nearly so easlly perhaps, but proved. The figure,
without' the circle, would suggest the device to be
employed By so doing new proofs may be discovered

N\

\

A i . N b ot ol e i e
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Eighty-Seven

Complete rect. HG. Produce
H DO to F and EO to XK, Designate AC
7 ='AE by p, BD=BbeqandI~IE=HD

\B by‘r.

v ”K ' -—Then a = q + r, b= p # »,
AN and h=p+q. TrLFMA = tri. OMC
-6V . and tri, COL = tri. KLB,

Pig. 85 \ < tri., AGB = rect. FGKO

= tri. ABH = % rect, HG. Rect. FGKO
= rect AFOE + sq. ED + rect. OKBD. .
Sopq=pr+r + qr.
< whence qu = 2'qr + 2r + 2pr.
But p + a® = P2 + q
‘ p+2pq+q=(q +2qr+r"’)+(p +2pr+.c*)
r (p+ ) (q+ﬂ2+@+r) A
. h® = g2 ¢ b
a. Sent to me by J. Adams, from The Hague,
and credited to J. F. Vaes, XIII, &4 (1917)

(II) --Through the Use of Two Circles. a

;thtzzilnht
- Construction. ' Upon the
legs of the rt. tri, ABH, as diam--
eters, construct circles and draw

ABH, HBC and HAC. _ .
Whence h : b b .. AC, .. hAC
Fig. 86 . = Db%,aac (1)

Also h: a=a:BC. . hBC a

.---(2)

(1) + (2)\-“(3)\112 +b2, __Q.E.D.
a. Another f‘orm is: el
(1) HA®? = HC x AB. (2) BH® = BC x AB
< Adding, (32 AH* + BH® = AC x AB + BC >

"= AB(AC + BC) = “ h® = a2 3 p2

HC, forming three similar rt. tri's

P
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b. See Edwards' Elemeénts of Geom., p. 161,
fig. 34 ‘and Am, Math. Mo., V. IV, p. 11; Math. Mo.
(1859), Vol. II, No. 2, Dem. 27, fig. 13; Davies
Legendre, 1858, Book IV, Prop. ‘XXX, p. 119; Schuyler's
Geom. (1876), Book III, Prop:. XXXIII, cor., p. 172;
Wentworth's New Plane Geom. (1895), Book III, Prop.
XXII, p. 164, from each of sald grbnpsitions, the
above proof Eighty-Eight imay be derived. -

Eighty-Nine

O With the legs
y ~,\of the rt. tri. ABH as
radil describe circum-
ferences, and extend AB
to C and F. Draw HC,
“HD, HE and HF. From
the similar tri's AHF'
and HDH,

AF : AH' = AH : AD

Sernen -
'

Fig. .87 . . b2 = AF x AD.---(1)
From the similar tri's CHB and HEB, |
*~=- CB:HB=HB : BE. .a%=CB X BE.---(2)

(1) + (2) = (3) a2 + b2 = Cp x BE + AF x AD
=h+d)h-b)+ (h+a)h - a)
=h® - b2 + h? - a%;
o (4) 2h? = 282 + 2b2. .~ n®? = a? + b3, )
. a&. Am, Math., Mo., V. IV, p. 12; also on p. 12
1s a proof by Richardson. But it 1s much more dif-
ficult than the above method. T

-

- Minety

-

o

For proof Ninety use fig.'éj.

AH® = AD(AB + BH).---(1), BH® = BE(BA + AH).---(2)
(1) + (2) = (3) BH® + AH® = BH(BA + AH) + AD(AB + BH)"
= BH x BA' + BE x AH + AD x HB + AD x BH \

= HB(BE + AD) + AD x BH + BE x AH + BE x AB-- BE x AB

-

/] AN

[N WU




...and

82 THE ,PYTHAGOREAN'-PROPOSITION

o

AB(BE + AD) + AD x BH + BE(AH + AB) -/BE % AB

AB (BE + AD)+ AD-x BH + BE(AH + AE + BE)- BE X AB

AB(BE+AD)+AD~XBH+BE(BE+2AH) - BE X AB

AB (BE. + AD) + AD x BH + BE® + 2BE X AH - BE * AB

AB(BE + AD) +-AD x BH + BE® + 2BE-x AE - BE (AD+BD)

ﬁB(BE + AD) + AD x BH + BE® + 2BE X AE. - BE x AD

BE x BD

AB(BE + AD) + AD x BH + BE (BE + 24AE) - BE(AD + BD)

AB (BE°+ AD) + AD x BH + BE(AB + AH) - BE(AD + BD)

"AB(BE + AD) + AD x JBH + (BE x BC = BH? = BD?)

- BE(AD + BD) .

AB(BE + AD) + (AD +BD)(BD - BE)

‘AB(BE + AD) + AB x DE = AB(BE+AD+DE) -

AB x AB = AB2, . h® = a2 + b%. ‘Q.E.D. N
a. See Math. Mo. (1859), Vol. II, ¥o.. 2, Dem.

28, fig. 13--derived from Prop. XXX, Book IV p. 119,

Davies uegendne, 1858; also Am. Math. Mo., Vol. IV,

p. 12, proof XXv. ) :

Won il'll i

Nin:tz-Qng

For proof Ninetx-One use fig. 87 This proof
1s known as the "Harmonic Proportion Proof."
From the similar tri's AHF and ADH,

AH : AD = AF : AH, or AC : AD = AF : AE
whence AC + AD : AF + AE = AD : AE '
or CD « CF = AD : AE, -
AC - AD = AF - AE = AD : AE,
- or DE : EF = AD : AE,
: : & 0D : CF = Dc : EF,
or h+b-a): (h+b+a)—(a-h+b) (a + h + b)

~. by expanding and collecting, we get - -
| n? = a® + b2,

: a. See Olney's Elements of Geom., University
Ed'n, p’*312 art. 971, or Schuyler's Elements of
Geom., p. 353, Exercise ¥; also Am. Math. Mo., V. IV,
p. 12, proof XXVI. o i y

>

s
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; . ABH are similar, then tri. HAC-: tri.
BHC : tri. ABH = AH® : BH® : ABZ2,
‘A , and so tri. AHC .+ tri. BHC tri.

, ABH = AH® + BH2 : AB2, QNow tri. AHC
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8

D.--Ratio of Areas.

As in the three preceding divisions, so here
in D we must rest our proofs on similar rt. triangles.

Ninety-Two

, Draw HC perp. to AB, form-
.ing the three similar triangles ABH,

AHC and HBC, and denote KB = h, HB

B-a, = b, AC = x, CB = y.- and HC

= Z. . .

Fig. Since similar surfaces are
‘proportional to the squares of thelr
homologous dimensions, therefore,

9

[%(x,+ y)z + 4yz = h® .+ a®) = [%yz + %xz = a2 +‘b2]’

= Bx+y)z + 3yz = (% + ba)a ]
s h® 4+ g2 --(aa+b)+a
-~ h® = a? + b2,

a. See Jury Wipper, 1880, p. 38, fig. 36 as
found in Elements. of Geomatry .of Bezout; Fourrey,

* .

. p. 91, as in Wallis' Treatise of Algebra, (Oxford),

1685; p. 93 of Cours de Mathematiques, Paris, 1768.
Also Heath's Math. Monegraphs, No. 2, p. 29, proof-
+ XVI; Journal of Education, 1888, V. XXVII, p. 327,
19th proof, vhere it 1is credited to L. J. Bullard,
of Manchester,-N.H. . .

« As the tri's ACH, HCB and

L2 4 [ 1]

Fig. 89 + tri. BHC tri ABH = 1, . AB® .
= BH® + AH2 ~ h® = a2 + b2 Q.E. D
. . a, See Versluys, p. 82 proof 77, where cred-
ited to Bezout 1768; also Math. Mo., 1859, Vol. II,
Dem. 5, p. 45; also credited to Oliver; the School

. l !
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Visitor, Vol. 20, p. 167, says Pythagoras gave this
proof--but no documentary evidence. ‘
Also Stanley Jashemski a school boy, age 19, i
of So. High School, Youngstown, 0., in 1934, sent me
same proof, as an original discovery on his part.
b. Other proportions than the explicit one
" as given above may be deduced, and so other sym- i
bolized proofs, from same figure, are derivable-- ‘
5 see Versluys, p. 83, proof 8. S -

PO
”
o

Ninety-Four

" Tri's ABH and ABH' are con-
gruent; also tri's AHL snd AHP: also
tri's BKH and BPH. Tri. ABH = tri.
BHP + trl. HAP ="tri. BKH + tri. AHL._
» tri, ABH : tri. BKH : tri. AHL = h®
: &% : b%, and so tri ABH : (tri B "\
" BRH + tri. AHL) =h® : a% + b2
1= h2 + (a® + b2). . n® = a* + b L
Q.E .

8

’ a. See Versluys, p. 84, fig..
93, wherl'e it 1is attributed to Dr. H. A. Naber, 1908,
AYso see Dr Leitzmann's work, 1930 ed'n, p. 35, fig.

35. | *

Ninety-Five

Complete the paral . HC, and
“@ the rect. AE, thus forming the simi-
Xt Jar tri's BHE, HAD and BAG. Denote . .

A 1 (B the areas of thése tri's by x, y and |
\\ 5 o z respectively. |
\_fz/ Tn.z : y :x=1,12:19.2:b2.f
)0 But 1t/ 1s obvious that =z
& Fii’g. 91 = x + 7. -*~~.,/, O —
| ' h/2 = 8. + b2
J '8. Original with tﬁe author, March 26, 1926,
- 10 p m‘ /
l /
f ’, //
/
:‘! /
f ///
4 “ //
: /
, /
oA ’! /
/ /
. ( / v
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Ninety-$1x . o

( Draw HL perp. to AB., -
. Since the tri's ABH, AHL, and : oo
HBL are similar, so.also the

squares AK, BE and HG, and

" since similar polygons are to
each other as the squares of
their homologous dimensions,

’:' { - we 'have - )
! ( : - )
: ‘ot tri. ABH : tri, HBL : tri. AHL
. ( ( _ 2, .2 , .2
( ( [ =" : a® : b -
( { ( = -AK .: sq. BE : sq. HG.
c 8q. q. q. -
Lo--Co K et ABH - tri. HBL + tri:
Fig. 92 AHL. .. sq. AK,= sq. BE + sq.
" "HG. . h%®.= a2 + p? »

a. Devised by the author, July: l,v1901 and
aftervards, Jan. .13, 1934, found in Eourrey's Curio
Geom., p. 91, where credited 'to R. P, Lamy, 1685,

ngtix:iix(n. ' T )

Use fig. 92 snd ‘g. 1. @

; ,3ince, by equation (5), see fig. 1, Proof , |
One, BHZ = BA x BL = rect, 1K, and in like manner, . °
AH? = AB x AL = rect. AC, therefore sq. AK = rect.
LK + rect. AC = sq. BE + s8q. HG. :

~h%-= a® + b2, Q.E.D. | '
a. Devised by the author -July 2, 1901, ' -
b. This principle of "mean proportional” can ' '
be made use of in many of the here-in-after figures
among the Geometric Proofs, :thus giving variations o
as to the proof of said figures.  Also many other fig-
ures may be constructed based upon the use of the
"mean proportional" relatlion; hence all such proofs,
- 8ince they result from an algebraic relationship of
corresponding lines of similar triangles, must be g
classed as slgebraic proofs. , vy . Y
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E.--Algebrate Proof;‘Through'Theory of Limits
. | -

Ninety-Eight

The so-called Pytha-
gorean Theorem, in its simp-
lest form i1s that in which
‘the two legs are equal. The
great Socrates (b. 500 B.C,),
by drawing replies from a
slave, using his staff as a
pointer and a figure on ihe

' -
! 5\\{’4' :_ *  pavement (see fig. 93) as a
: y }7 ) (R model, madq him (the slave) -
. ‘\\ ¢ see.'that the equal triangles
Vet s :R in the squares on HB~and HA"
Cuooo... ! were just as many as like
Fig. 93 : equal tri's in the sq. on AB,

- a8 1s evident by inspection.
(Seé Plato's Dialogues, Meno, Vol. I, pp. 256-260,
Edition of 1883, Jowett's translatibon, Chas. Scribner
and Sons, ) - ” '

. 8. Omitting the lines AK, CB, BE and FA,
wvhich eliminates the numbered triangles, there re-
mains the figure which, in Free Masonry, 1is called
the Classic Form, the form usually found on the mas-

" ter's: carpet.

b. The following rule 1s credited to Pytha-
goras. Let n be any odd number, the short side;

' square it, and from this square subtract 1; divige

the remainder by 2, which gilves the median side; add
1 to this quotient, and this sum 1is. the hypotenuse;
e.8., 5 = short side; 52 - 1 = 24; 24 4+ 2 = 12, .the
median side; 12 + 1 = 13 the hypotenuse., See said -
Rule of Pythagoras, above, on p. 19,

Ninety-Nine T~

Starting with fig. 93, and decreasing the‘xf
length of AH, which necessarily increases the length

Shisthain
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L3

of AH, which ne‘cessarily in-

A creases the length of HB,
! RN ( since AB remains constant, we
S S 7 'decrease the sq. HD and in-
, “ ~Hr \‘ ,//  crease the sq. HC (see Iig
m(\ R \ ,I 94&)
Ny, % Now we are to prove
A’\ 3 h that the sum of the two vari-
f YL able squares, sq. HD and sq.
,; ‘7, ,\(\ 2 : HC will equal the constant
) /, 1 S H*_Hs_‘_l’__EF" , -
EVf o MF D . s We gaye, fig. 9ka, -
Fig. ghe . B =& +Db%.---Q1)

But let side AH, fig.
93, be diminished as by x,

])_”__q,,y._ﬂ' thus giving AH, fig. 94a, or bet-
%y - ter, FD, fig. 94b, and let DK be .

.
‘fﬁ: t .in¢reased by y, as determined by
4/ v;éﬂk the hypotenuse h remaining con-
. )& |- “stant.

i 3 Now, fig. 94b, ‘when a= b,
ME--Fyg-_ R a% 412 = 2 area of sq. DP. And
‘ ,

{B when a < b, we have (& - x)?
= aréa of sq. DN, and (b + y)?

Fig. 9%b ) = area of sa. DR
Also c® - b +y)®
DA=AB=c = = (a - x)® = area of MABCLR, or

IE=0K=g=D (a -x)2+ (b +7)2 —c.---(2)

DF = a2 x Is this true? Suppose it 1s;
IL=b+y then, after reducing (2) - (1),

" FE=HK = x = (3) -28x + x® + 2oy + y2 = 0,
KL =M =y “or (4) 2ax - x® = Q‘By.+ y?, which
EK =FL = h shows that the area by which

. (a® = .8q. DP) is diminished = the
area by which b? 1s increased. See graph 94p, .~ the
increase always equals the decrease.

‘But a® - 2x(a - ¥) - x® = (a.- x)? approaches
0 wvhen x approache‘s 8 in'value.
, ~ (5) fa, - ,:2 = 0, wléen X =38, wvhich 1s true
and (6) b2 + 2by + y* = (b + y)® .vhen x = a,

for . ‘when x becheff a, b +y) becomes c, and so, we .
T 1

I

!

T

A S
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1

have ¢® = ¢® which is true.
- equation (2) is true; it rests od the eq's
(5) and (6), both of which are true,
.. whether a < = or > b, h® = a2 + b2,
. a, Devised by the author, in Dec., 1925. Also J
. a like proof to the above is that of A. R. Colburn,
devised Oct. 18, 1922, and is No. 96 in his collec-
tion of 108 proofs. '

F, --Alfebratc-Geometrtc Proofs

_  In determining the equivalency of areas these
proofs are algebraic;. but in the final.comparison of
areas they are geometric. _ ;

" The construction, see
fig 95, being made, we have

PN " But sq. FE = sq. AC |
S SN + 4 tri. ABH |
P | ‘\ ) . ,
RN o =h%+ 4 ‘Z—b = n? + 2ab. |
AR R R ~ %
\ : : ,,é.‘Equating, we have
N L ’ _ .
J“' Lo h2 + 2ab = (a + b)2 = a2 + 2ab
\ L + b2, .~ h% = a2 + b3,
}5/// : . _ &. See Sci. Am. Sup.,
V. 70, p. 382, Dec. 10, 1910,
Fig. 95 credited to A. R. Colburn,
‘ Washington, D.C. ° »
One Hundred One

Let AD = AG = x, HG = HC = y, and BC = BE
=2z, Then AH=x +y, and BH = y + z.

With A as ‘center and AH ds radius describe
arc HE; with B as center and BH as radiis describe
arc.HD; with B as center, BE as radius describe arc

. TEC; with A as center, radius AD, describe -arc DG.

/
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Draw the parallel
- F lines as indicated. By in-
27N specting the figure 1t be-

/'( 1:}:»\ o\ . comes evident that 1f y 2xz,
< .F\X’ «.\H':\g‘ﬁ\ then the theorem holds. Now,
SN ) ‘.\1{,“3? " since;AH 1s a tangent and AR

\ “wk’ % 1s a chord'of same circle,
l\

F-Ti AH? = AR x AD, or (x + y)?

:..7‘: -’f:"--.; = x(2y + 2z) = x® + 2xy + 2xz.
, 7:7. 1 '7! Whence y = 2x2.
Dty . sq. AK = [(x® + y® + 2xy)
X_ZJ_[!,__,R = 8q. AL] + [(2® + 2yz +
Fig. 96 (2xz = Y, )] sq. HP. .. h®
= a2 + b2 '

4

a. See Sci. Am. Supt., V 84, p. 362, Dec. 8,
1917, and credited to’ A. R. Colburn It is No. 79
in his (then) 91 proofs. ‘ ' '

b. This proof is a fine jllustration of the
flexibility of geometry. Its value lies, not in a
repeated proof of the many times established fact,
but in the effective marshaling and use of the ele--.
~_ments of' a proof and' even more also in the better
insight which it glves us to the interdependence of
the various theorems of geometry.

. Draw the bisectors of
TAF" ’angles A, B and H, and from A
their common point C draw the
perp's CR,” CX and CT; take AN
= AU = AP, and BZ = BP, and
draw lines UV par. to AH, NM-
par. to AB and 8Y par. to BH.
Let AJ = AP = x, BZ = BP = y,
‘and HZ = HJ = z = CJ = CP
= CZ. ’
- Now 2 tri. ABH = HB .
x HA = (x +2)(y + 2) =
LL - :BL"“IK + xz + yz + zz = rect. PM
Fig. 97 . .+ rect. HW.+ rect. HQ+ sq. X,
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But 2 tri, ABH = 2AP x CP + 2BP x CP + (2 sq.

HC = 2PC2) = 2xz + 2yz + 22°
- =-areot. HW + 2 rect. HQ + 2 sq. 3X.
 rect. PM = rect. HW + rect. HQ + sq. KX,

Now sq. AK = (sq. A0 = sq. AW) + (sq. OK -
= 8q. BQ) +_(2 rect. PM = rect. HW + 2 rect. HQ
+ 2 sq. SX) = sq. HG + sq. HD. .~ h® = a? + b=,

a. This proof was produced by Mr. F. S. Smed-

ley, a photographer, of Berea, 0., June 10, 190l1.

Also see Jury Wipper, 1880, p. 3%, fig. 31,
credited to E. MSllmann, as. given in "Archives d.
Mathematik u, Ph. Grunert," 1851, for fundamentally

“‘\t

Qne_Hyndred Three

¢ ' : Let HR = HE = a = SG.
" Then rect. GT = rect. EP,
and rect. RA = recte QB.

. tri's 2, 3, 4 and
5 are all equal. .. sq. AK
= = (area of 4 tri. ABH
+ area sq. OM) 2ba
+ (b - ag = 2ab + b2 - 2ba
+ a + a . & h? = a®
+ ba. Q.E.D. ‘

a. See Math. Mo.,.
1858-9, Vol. I, p. 361
where above proof 1s given
by Dr. Hutton (tracts, Lon-
don, 1812, 3 vol's, 820) in
his History of Algebra.

\ Qne-uundted-ieuz
Take AN and AQ = AH KM and KR = BH and )
through P and Q draw PM and QL parallel to AB; also
draw OR and’ N3 par. tooAC, Then CR = h - a, SK=h
-barnd RS = a + b - h. \ 2 '
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: Now sq. AK = CK? = 032 + RK2
H - R8% + 2CR x 8K, or h? = b2 + a2
-(a+b-n)*+2Mh-a)x (h-0)
: B -b%4+a®-a2- b2 .h% - 2ab + 28h
TR ERNE + 2bh + 2h® - ah - 2bh + 2ab. .. 2CR
#.,_ :‘v‘ ’h""' 'x 8K = R3%, or 2(h -a)(h - D)
S O = (a+ b - h)2, or 2h® + 2ab - 2ah
A_W. FJL - 2bh = a% + b2 + h® + 2ab + 2ah
L - L-.tJ -2bh. . h®=a?4+ b2,
,e R SK - a. Original with the author,
Fig. 99 April 23, 1926. ‘

G.--Algebdbratc-Geometric Proofs Through Stmtlar«Polﬁ—
gons Other Than Squares.
1st.--Similar Triangles
gne_Hyndred Five
Tri‘s ACB, BDH and
HEA are three similar tri's
" constricted upon AB, BH and
‘HA, and AK, BM and HO are
- three cofresponding rect's,
.double in area to tri's ACB,
BDH and HEA respectively.
’ . Tri, ACB : tri, BDH
: trIT"HEA = h? : a2 : b3
= 2'tri. ACB : 2 tri., BDA
='2 tri. HEA = rect. AK

: rect. BM : rect. HO. Produce LM and ON to their in-

tersection P, and draw PHG. It 1s perp. to AB, and
by the Theorem of Pappus, see fig. 143, PH = QG. ..,
by said theorem, rect. BM + rect. HO = rect. AK.
tri. BDH + tri. HEA = tri, ACB. .. h® = a% + b%,

. av Devised by the author Dec. 7, 1933.

s gne Hundred Six

In fig. 100 extend KB to R, intersecting 1M
at 8, and draw PR and HT par. to AB. . Then rect. BLMH
= paral. BSPH = 2 tri. BPH = 2 tri(BPE = PH x QB)
= rect. QK. - In like manner, 2 tr’. HEA = rect. AG.

I
¢

il

|
3
i
|
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A

| .
! ~.” Now tri. ABH : trl. BHQ : tri. HAQ = n? : a% : v®
= tri, ACB : tri. BDH': tri. HEA. - ' i
But tri. ABH = tri. BHQ + trl. HAQ. ...tri.

s ACB = tri. BDH + tri. HEA. . h% = a? + b, Q.E.D.
. a. Devised by author Dec. Ty 1933.

’
I T Ty A S

One_Hundred_Seven

- o Since 1in any triangle with
‘'sides a, b and c--¢ belng the base,
and h' the altitude--the formula

\ for h' 1s: o ]
\ yo ;
o \ h|2=23x2(s-a'12L-b')2(s-c‘J ; ‘
B B be'® |
H_ - _and having, as here, ¢' = 2a, h'=D,
Fig. 101 a' = b' = h, by substitution in

. formula for h'2, we get, after re-
. dueing, b2 .= h? - a2, . h% = a® + b2, |
- a. See Versluys, p. 86, fig. 96, where, taken
from "De Vriend des Wiskunde" 1t is attributed to
J. J. Posthumus.

2nd.--Stmilar Polygons qf,Hore Than Four Stides.

~ b

‘Regular Polygons . o

&
S - L Qne_Hyndred Elght \ |
/ ‘ | | |
/. VoK :

K Any regular poly-’
gons can be resolved into
as many equal 1lsosceles L
tri's. as the polygon has '
'sides. As the tri's are
similar tri's so whatever
relations are established.

(. among these tri's AOB, BPH
\f; C o \ _ _ and HRA, the same relatlons '
i - /‘E " will exist among the poly-_ ;
S et gons 0, P and R. - ’

/
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As tri's AOB, BFH and HRA are simllar isosce-
les tri's, 1t follows that these tri's are a particu-
lar case of proof One Hundred Six.

And as tri. ABH : tri, BHQ : tri, HAQ = h®
. a2 : b2 = trl. AOB : tri. BPH : tri. HRA = penta-
'gon 0 : pentagon P : pentagon R, since tri. ABH
= tri. BHQ + tri. HAQ. KX pqugon 0 = polygon P
+ polygon R, -~ h2? = a® + b*

a. Devised by the author Dec. T, 1933.

One _Hundred Nine
: Upon the three sldes of
the rt. tri. ABH are constructed
the three similar polygons (hav-
-ing five or more sides--five in
fig. 103), ACDEB, BFGKH and HLMNA.
Prove algebraically that h® = a®
+ b2 , through proving that the
sum of the areas of the two less-
er polygons = the area of the
greater polygon.
'In general, an algebraic
: proof is impossible before trans-
Fig. 103 formation. 'But granting that h®
= a2 + b2, 1t is easy to prove
that polygon (1) + polygon (2) polygon (3), as we
know that polygon. (1) : polygon (2) : polygon (37

 =78%: b2 : h2, But from .this 1t does not follow -

that a2 + b2 = h2
- See Beman and Smith's New Plane and Solid

Geometry (1899), p. 211, exercise 438. ‘ o .

But an algebraic proof 1s always possible by
transforming the three similar polygons into equiva-
lent similar paral's and then proceed as in proof

One Hundred Six. - *
Knowing that tri. ABH : tri. BHQ : tri. HAQ

= h? : a? : b2, ---(1)
and that P. (3) : P..(1) : P. (2). [P = polygon]
= h? : a2 : b2, ---(2); by equating tri ABH : tri.
BHQ : tri. HAQ = P. (3) : P. (1) : P, (2). But

Y
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tri. ABH = tri, BHQ + tri. HAQ.
+ P.

“P. (3) =P. (1)
(2). ~ h® = a2 + b2, Q.E.D. : -
a. Devised by the author Dec. 7, 1933.

b. Many more algebraic proofs are possible,.
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areas.

II. GEOMETRIC PROOFS

All geometric demonstrations must result from
the comparison of areas--the foundation of which 1s
superposition.

As the possible number of algebralc proofs
has been shown to be limltless, so it will be conclu-
sively shown that the possible number of geometric
proofs through dissection and comparison of congru-
ent or equivalent sreas is also "absolutely unlimit-
ed." Co - :
The geometric proofs are classified under
ten type forms, as determined by the figure, and ornly
a limited number, from the indefinite many, will be
given; but among those given will be found all here-
tofore (to date, June 1940), recorded proofs which

‘have come to me,-together with all recently devised

or new‘proofs.’ )
The references to the authors in which the
proof, or figure, is'found or suggested, are arranged

N chronologically so far as possible.

The i1dea of throwing. the suggested proof into
the form of a single equation is my own; by means of

" 1t every essential element of the proof 1s set forth,

as well as the comparison of the equivalent or equal -

The wording of the theorem for the geometric
proof 1s: The square described upon the hypotenuse
of a right-angled trtan;le ls equal to the sum of the
squares described upon ‘the other two stdes.

TYPES
It i1s obvious that the three squares con-
struoted upon the three sides 6f a right-angled tri-
angle can have eight different positions, as per se-
lections.. Let us designate the square upon the

: 97 . t. . -4




-follows'\

— « .
2 ‘
e .,
L

98 THE PYTHAGOREAN PROPOSITION

hypotenuse, by k, the square upon: the shorter side by
g, and the square upon the other side by b and set
forth the eight arTrangements; they. are: S

. All squares h, a and b exterior.
a and b exterior and h interior.
h and a exterior and b interior.
. h and p exterior and a 1nperior.
. a exterior and h and b interior. .
b
h
A

exterior and h and a interior.
exterior and a and b interior.
11 squares h, a and b interior.

HoEBUGQW >

The arrangement designated above constitute

the first eight of the following ten geometric types,

the other two being:

-

I. A translatioh of one or more squares..
J. One or more squares omitted

Also for some selected figures for proving

' Euclid I, Proposition 47, the reader 1s referred to

H. d'Andre, N. H. Math. (1846), Vol. 5, p. 324.

Note. =By exterior" 1s ‘meant constructed-

outwardly. _—
a . By "interior" is meant constructed

overlapping the given right trilangle.

This type includes all proofs derived from ;
the figure determined by constructing squares upon
each side of a‘right-angled triangle, each square be-"—
ing constructed outwardly from the, given. triangle.
The- proofs under: this type are elaasified.as

(a)eThose'proofs in which pairs of the dis-

sected parts are congruent.

-Congruency implies superposition, the most
fundamental and self-evident truth found in plane
goeometry. - |

- e
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: As the ways of dissection are so various, it
follows that the number of "dissection proofs" is un-
limited.

(b) Those proofs in which pairs of the dis-
sected parts are shown, to be equivalent.
-As geometricians at large are not in agree-
ment as to the symbols denoting "congruency" and .
"equivalency" (personally the author prefers = for
congruency, and = for equivalency), the symbol used
herein shall be =, tre context deciding its import.

(a) PROOFS IN WHICH PA.RS OF THE DISSECTED PARTS ARE
" CONGRUENT.

Paper Folding "Proofs," Only Illustrative

‘.\ > = ' ,4-: Qﬁg

: Cut out a square piece of
pap&r EF, and on its edge, using
the edge of a second small square
of paper, EH, as a measure, mark
off ‘EB, ED, LK, LG, FC and QA."

"Fold on DA, BG, KN, KXC,

|
I CA, AB and BK. Open the sq. EF
i
f

' M- . and observe ithree sq's, EH, HF
Lot 26--—"' and BC, and that sq. EH = sq, KG.
- e i With scissors cut off-
J© . Fig. 108 ~  tri, CFA from sq. HF, and lay it

o on sq. BC in position BHA, ob-

)serving that it covers tri. BHA of sq. BC; next cut

off KLC from sq' s NL and HF and lay it on sq. BC'in

~ position of KNB 8o that MG falls on PO. Now, observe
. that tri. KMN is part of sq. KG and 8q. BC and that

the.part HMCA is part of sq. HF and sq. BC, and that
all of sq. BC 1s now covered by the two parts of sq.
KG and the twe parts.of sq. HF. .

Therefore the *(sq. EH = sq. KG) + sq. HF -
= the sq. BC. Thersfore the sq. upon the side BA .
which 1s sq. BC = the sq. upon the side BH which 1s

|-
e

t
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sq BD + the sq upon the side HA which is sq. HF.
. h® = a® + b3, as shown with paper and scissors,

< and obsérvation.

~ . a; See "Geometric EXercises in Paper Fold-
ing," (T. Sundra Row's), 1905, p. 14, fig. 13, by .
Beman and Smith; also School Visitor, 1882, Vol. III,
pP. 209; also F. C. Boon, B.H., in "A Companion to -
Elementary School Mathematics, (1924), p. 102,

proof 1.

Two

-

Cut cut three sq's
“EL whose edge is HB, FA
vhose edge HA,  and BC whose . N
edgea. _;§ AB, ma%ing AH = 2HB. §

} Then folg 8q. FA / .
along MN and OP, and sepa- :
rate into 4 sq's MP, QA, ON ‘) :
and FQ -each equal to sq. EL. - ]

Next fold the .4 pa-
per 8q's (U, R, S and T be-
ing middle pt's), -along HU,
PR, Q3 and MT, and cut,
forming parts, 1, 2, 3, 4,
5, 6, 7 and 8.

Now place the 8
parts on sq. BC in posi-
e : . -+ tions as indicated, reserv-

Fig. 105 ing sq. 9 for last place.

. Observe that sq. FA and EL R
exactly cover sq. BC. . sq. upon BA sq. upon (HB ! ' -
= EL) +3q. upon AH. .. h? = g +b Q.E.F, |

} a. Beman and Smith's Row's’ (1905), work, .

. p.-15, f*g. 14; also School Visitor, 1882, Vol III, T

foome o p. 208; also F c. Boon, p. 102, proof 1. o

3

L4
3
1
i
e a——
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-
W

Three

K .Cut. out three ‘sq's as in
>|  fig. 105. Fold small sq. 9 (fig.
AP~ R 105) along middle and cut, form-
o \ ing 2 rect's; cut each reczt.
b f? \ along diagonal, forming 4 rt.
v tri's, 1, 2, 3 and 4. But from
\ Bt each corner of sq. FA (fig. 105),
Ni'L __--"3 g & rt. tri, each having a base HL

= 4HP (fig. 105; FT = 3FM), giv-
Fig., 106 ing 4 rt. tri's 5, 6, 7 and 8

’ -~ (f1g. '106), and a center part 9
(fig. 106), and arrange the pieces as in fig. 106,
and observe that sq. HC = sq. EL + 8q. HG, as in fig.
105. . h% = a2 4+ p2

&, See "School Visitor," 1882 Vol III,
p. 208,

- b. Proofs Two and Three are particular and

, 111ustrat1ve--notigeneral--but useful as.a paper—ang

scissors exércise,

c. With paper and scissors, many other proof&
-true~under all conditions, ‘may be produced, using
figs. 110, 111, etc., as models of procedure.

EQEL'

Particular case-wil- -
lustrative rather than demdh-
strative. .

The sides are to each
other as 3, 4, 5 units, Then
sq. AK contailns 25 sq. units,
HD 9.8q. units and HG 16 sq.
units. Now 1t-1s evident .that
the no. of unit 'squares in the
sq. AK = the sum of the unit

ko~ 4¥L--J squarés in the squares HD and
C L -l- J -:-I.‘J K . HG . .

O.o AK: . +“ . HG g
Fig. 107 Y ] sauare : sq HD' sq g

E= I
R APETN
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"a. That by the use of the lengths 3, 4, and
5, or length having the ratio of 3 : 4.: 5, a right-
angled triangle 1s formed was known to the Egyptians
i as early as 2000 B.C., For at’ that t.ime there existed
- professional "rope-fasteners"; they were employed to
. . 7 construct right angles which they did by placing
o : three pegs -so. that a rope measuring off 3, 4%nd 5
units would just reach around them. This method is
< 1n use today by carpenters "and masons; sticks 6 and
8 feet long form the two sides and a "ten-foot" stick
forms the hypotenuse, thus completing a right-angled
‘ _ triangle, hence establishing the right angle.
1 ) ~ But granting that the early Egyptians formed
- right angles in the "rule of thumb" manner described
S . above, At does not-follow; in fact it 1s not be-
lieved/ that they knew tiwe area of the square upon
the hypotenuse to be equal to the sum of the areas of
. ,the squares. upon the othsr two sides. -

/ The discovery of this fact 1s credited to
Pythagoras, a renowned philosopher and teacher, born |
at Samos about 570 B.C., after whom the theorem 1s ?

T T ied "The Pythagorean Theorem." (See p. 3)
: é/ 36 Hill's Geometry ror Beginners, p. 153;
Ball's Histo ¥y of Mathematics, pp. 7-10; Heath's
y th. Monographs, No. 1, pp. 15-17; The School Visi-
v , tor,.¥ol. 20, p. 167. -

/
/.

e - .

A\ ) ) ‘ E.’-!g ,

Another particular

- case 1s 1llustrated by fig. -
-+ 108, in which BH = HA, show-
~‘-1ng 16. equal triangles.
" . . _Since the sq. AK con-
tains 8 of these triangles, .
~ 8q. AK = sq. HD + sq. HG.'
- h® = a® + b2, °

\a. For this and many
other demonstrations by dis- |
section, see-H. Perigal, in ;
Messenger of Mathematlcs,

21
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1873, V. 2, p. 103; also see Fourrey, P. 68.

b. See Beman and Smith's New Plane and Solid

Geometry, p. 103, fig. 1.
¢, Also R. A. Bell, Cleveland, 0., using sq.
AK and lines AK and BC only. ' -

Six

1

In fig 108, omit lines AF, BE, LM and NO,

'and draw line FE; this gives the fig. used 1in "Grand

Lodge Bulletin," Grand Lodge of Iowa, A.F. and A.M.,
Vol.. 30, Feb. 1929, No. 2, p. 42. .The proof 1s ob-
vious, for the 4 equal isosceles rt tri's which
make up sq. FB = sq. AK. . h% ='a® + bZ,

7 a. This gives another form for a folding pa-
per proof.

Seven

" In fig. 108, omit lines as in proof S8ix, and

"1t 1is obvious that tri's 1, 2, 3 and 4, in sq's HG -

and HD will cover tri's 1,.2, 3 and 4 in 54 AK, or

.sq. AK = sq. HD + 3q."HG. . h® =a%+ b r

a. See Versluys (191%), fig 1, p. 9 of his

96 . proofs.
o Eight = -
v i ‘ o 7
In fig. 109, let
. ‘ HAGF denote the larger
,,t; ' ~——E sq. HG.  Cut the smaller
o AT I sq. EL into two equal
) N M‘ 1g. rectangles AN and ME{ fig.
;o R 1 109, and form with these
e ﬂr;? |/ - and the larger sq. the
e e 7.%& ‘rect. HDiF. Produce DH
R - H AEP 50 that HR = HF. On RD
Fig. 109 as a dlameter describe a
{ : semicircle DCR. Produce
I
\
- ) \
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N

HF. to C in the are. Join ‘CD, cutting FG in P, and
AG in 8. Complete the 8q. HK, .
Now tri's CPF and LBD. are congruent as are

tri's CKL and PED. Hence sq. = (sq. EL, fig. 105
. = rect. AN + rect. ME, fig. 109) + (sq. HG, fig. 105
= quad. HASPF(+ tri. 8GP, fig. 109). . hZ = a® + b2,

a. See Sciiool ‘Visitor, 1882, VOl. III, p. 208.

‘ b. This method, embodied in proof Eight, will
.ransform any rect. into a square.
¢. Proofs 'I‘wo to Eight inclusive are illus-
trative rather than a demonstrative.

[3

Demonst‘rati‘ire Proofs

Nine T o
, [ -
In fig. 110, through
Jr\F P, Q, R and 8, the centers of
gl \ A * the sides of the sq. AK draw
6 _3' )2 N PT and RV par. to AH, and QU

\
. \\Lf A b// o, the center of the sq. HG,
o dranHpar. to AB and IY

’ A "'“'“w*par. to AC, forming 8 congru-
Co \ ¥ ent quadrilaterals; viz., 1,
‘pl&g‘ £ ;‘,,LR ., . 2, 3 and 4 in sq. AK, and 1,
: ANV, i 2, 3 and. 4 in sq. HG, and sq.
S CLI. X 2K 7 51insq. AK ='sq. (5=HD)r
o Q - The proof of their congruency
" .  1s evident, since, in the.
Fig. 110 paral. OB, (SB.='SA) = (OH

. ’=OG-APsinceAP=AS)
(8q. AK = 4 quad. APTS + sq. TV) = (sq. HG = 4 quad.
OYHZ) + sq. HD, ) sq. on AB =" sq. on BH + sq. on'AH,
hz = a® + b? :

? &, See ‘Mess, Math., Vol. 2, 1873, p. 104, by,
Henry Perigal, F. R. A. 8., etc., Macmillan and Co.,
London and Cambrid&e. | Here H. Perigal<shows the
great value of proof by dissectiorn. and suggests its
application to other ﬂheorems also. Also “see Jury

\

. '\  and SWpar. to BH, and through
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. . J
Wipper, 1880, p. 50, fig. 46; Ebene Geometrie, Von G. o~

_.Mahler, Leipzig, 1897, p. 58, fig. 71, and School .~ = .
. Visitor, V. III, 1882, p. 208, fig. 1, for a particu- : ]
lar application of the above demonstration; Versluys, .
1914, p. 37, fig. 37 teker from "Plane Geometry" of , >

i J. 8. Mackay, as given by H. Perigal, 1830} Fourrey, ‘ '

g p. 86; F., C. Boon, proof ', p. 105; Dr. Leitzmann, )

§ P 14, rig. 16, .

§ b. See Todhunter's Euclid for a simple proof ‘ Ce,

g extracted from a paper by De Morgan, in Vol. I of the

i

!

1

(\v.:‘

iy

Quarterly Journal of Math., and reference is also
made there to the work "Der Pythagoraische Lehrsatz," ———
Mainz, 1821, by J. J.  I. Hoffmann. :
c. By the above dissection any two 'squares .
s may be transformed into one square, a fine puzzle for .
"~ pupiis in plane geometry. : -
d. Hence any case in which the three squares; ‘ ' v
are exhibited, as set forth under the first 9 types .
__of II, Geometric Proofs, 4 to J inclusive (see Table I
. " of Contents for said types) may be proved Dby this — N
method. - - - k ‘
c. Proof‘Nine is unique in that the smaller ; :
. 8q. HD 1s not dissected. R . ; .

In fig. 111, -on CK
- construct tri. CKL = tri. ABH;
produce CL to P making LP=BH _
and take LN = BH; draw NM, AO e
and BP each perp. to CP; at . . ,
any angle of the sq. GH, as F,
construct a tri. GSF =.tri.
ABH, and from any angle of the - |- L
sq HD, &s H, with a radius : ' B
= KM, ‘determine the pt. R and : '

draw HR, thus dissecting the
3q's, as per figure.

It 1s readily shoyn

B b
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that sq. = (tri. CMN = tri, " BTP) + (trap.’ NMKL

= trap, DRHB) + (tri., KTL = tri. HRE) + (quad. "AOTB -
+ tei. BTP = trap. GAHS) + (tri. ACO = tri. GSF) |
= (trap. DRHB + tri, HRE = sq. BE) + (trap. GAHS ;

+ tril. GSF = sq. AF) = sq. BE + sq. AF. a sq. upon ,
AB = sq. upon BH + sq. upon AH, . h% =a% +Db%,

; a. This dissection and proof were devised by
the author, on March 18, 1926, to establish a Law of
Diasection, by which, no matter how the three squares
are arranged, or placed, their resolution into the
respective parts as numbered in fig. 111 "can be read- .
11y obtained. ' g R ‘

b, In many of the geometric proofs herein the
reader will observe that the above- dissection, wholly"
or partially, has been employed. Heuce these- proof's
are but variation of this general proof. ‘

\

Eleven .

- In fig. 112 con-
celve rect TS cut off from
sq. AF and placed in posi-
tion of rect. QE, AS co-
inciding with.HE; theﬁ DER ¢
is-a st. line. since these
rect vere equal by construc-

. tion. The rest of ‘the con-
. struction and dissection is -

/ r -~ evident, )
’ '\'K- sq. AK = (tri. CKN = tri,
CeloamoN . PBD) + (tri. KBO = tri. BPQ)
‘Fig. 112 .- 4+ (tri. BAL = tri. TFQ)
s v >+ (tri. ACM ='tri. FTG)
. >+ (sq. LN = sq. RH) = sq. BE + rect. QE + rect. GQ ‘
4+ 8q. RH = 8q. BE + sq.\GH -8q. upon 4B = 3q. upon
"BH + s8q., upon AH, . h® = a% + b @ Ca e

; a. Original with the author after having care-
fully an&lyzed the esoteric implications of BhaSkara@
"Behold!" proof--see proof Two Hundred Twenty-Four,

fig. 325.

7
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b The reader will notice that this dissec-
tion contains some of the elements .of the preceding
dissection, that it 1s applicable to all three-square
figuves like the preceding, but that it 1is not so
simple or fundamental, as 1t requires a transposition
of one part of the sq. GH,--the rect. TS--, to the
. 8q. HD,--the rect. in position QE--, so as to form

the  two congruent rect's

GQ .and QD.

¢c. The student will note that all geometric
proofs hereafter, which make use of dissection and .
congruency, are fundamentally only varilations of the
proof's established by proofs Nine, Ten and Eleven and
that all other geometric. proofs are based, either par-
tially or wholly on the equivalengy of the correspond-.
ing pairs of parts.of the figures under consideration.

~Twelve S .

This proof 1% a sim-
ple variation of the proof
Ten above. In fig. 113, ex-

‘.tend GA to M, draw CN and BO

perp. to AM; take NP = BD
and draw PS par. to CN, and

[

\

through H draw QR par. to AB.

Then sincepit 1s easily
showp tha: parﬁE”I'and 4 of
sq. AK = parts 1 and 4 of
sq. HD, and parts 2 and 3 of
sq. AK = 2 and 3 of sq. HG,
. 8q. upon AB = sq. upon BH
+ sq. upon AH.

a. Original with

the author March 28, 1926 to obtaln a figure more

o readily constructed than

fig. 111.

b: See School Visitor, 1882, Vol. III, p.

208q9, Dr. Leitzmann, p.

.......

15, fig. 17, 4th Ed'n.

.. __‘/- b~ T
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Fig. 114

upon AB = sq. upon

L3

b.m.

In fig. 114, produce
CA to 0, KB to M—GA—to—V;—"
making AV = AG, DB to U, and
draw KX and CW par. resp. to
BH and AH, GN and H", par. to
AB, ~anq\0T par. to FB,.

Sq. AK:'= [tri, GKW = trl, .

(HLA = trap. BDEM + tri, NST)]
+ [tri. KBX = tri. GNF

= (trap., OQNF + tri, BMH )]

+ (tri. BAU = tri, 0AT)

+ (tri. ACV = tr1. A0G)

+ (sq. VX,= paral. SN)-

= sq. BE + sq. HG. u sq.

BH + sq. upon AH. ., h2? 2 g2 + p2,’

'a. Original with author March 28, 1926, g: 30

b. A variation‘of the proof Eleven~ab0ve.
=-Svell -

(RN T
i NS’ 26
L : !
i N )

Ol )N
Fig. 115

j
+ sq. ST = 8q. BE +

BH + 8q. upon AH,

-Produce CGA -to 8,
draw SP par. to FB, -take HT
= HB, draw TR par. to HA,
Produce GA to M, making AM

. = AG, produce DB to L, draw
KO and CN par. resp. ‘to BH
.and AH, and draw QD. Rect.
RH .= rect. QB 3q. AK

(tri.. CKN = tri.-ASG)

(tri. KBO = tri. $SAQ)

(tri. BAL = tri. DQP)

(tri. ACM = tri. QDE)

(sq. LN =.sq. 87) = rect.

- PE + rect. GQ + sq. ST = sq.
BE + rect. QB + rect. (¢ ]
sq. GH. ., sq. upon AB = sq. upon
A h2 = g2 + p2 ‘

+ 4+ + + 0

~————— [A——
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a. Original with author March 28, 1926, 10

a.m,
b. “This is another varlation of fig. 112,
Eitigea

- Take HR = HE and
* F8 = FR = EQ =
Draw RU par. to

AH, 3T par. to.FH, QP par.
to BH, and UP par. to AR.
Extend " GA to M, making AM
= AG, and DB to L and draw
CN par. to AH and KO par.
to BH.,

L/
: /’ : Place rect, GT 1in
A\ Ns : N
: qj. 4 ! position of EP. Obvious
PN ' that: 8q. AK = parts (1
C'::f....’l_::'l( + 2+ 3)+ (4% + 5 of rect,
. : HP), . Sg. upon AB = sq.
Fig. 116 upon BH + sq. upon AH.,

. h% = a® + b2

_ a. Math. Mo., 1858- 9, Vol. I, p. 231 where
this dissection is credited to David W, Hoyt, Prof.
-Math. and Mechanics, Polytechnic College, Phila, Pa.;
also to Pliny Earle Chase, Phila., Pa.

o b. The Math. Mo. was edited by J. D. Runkle,
A.M., Cambridge Eng. He says this demonstration 1is
essentially the same as the Indlan demonstration
' found in "Biija Gauita" and referred to as the figure
. of "The Brides Chair,

.¢.-Also see .sald Math Mo., p. 361, for an-

other proof; and Dr. Hutton (tracts, London, 1812 in
his History of Algebra) , ‘

/
H

In_ﬂigi_lligijhe dissection 1s”’evident and
shows that parts'l, 2 and\3 in sq. AK are congruent
to'parts 1, 2 and’3 in sq. HG also that parts 4 and

! 1
-~
L] ~

U T N o

e,
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5 in sq. AK are congruent to
parts 4 and 5 in sq. HD. o ]
o (sq. AK = parts 1 + 2 + 3

+ 4 + 5) = (sq. HG = parts

- i+ 2+ 3)+ (sq. HD = parts
. % 4y +5)., . sq. on.AB 8¢, \ ,
i on BH 4+ aq. on AH - h® - N

= a2 + b%,
a. See Jury Wipper,
1880, p. 27, fig. 24, as
" glven by‘Dr._Rudolf Wolf in
"Handbook der Mathematik /
ete.," 1869; Journal of Ed-
. ueation, V. XXVIII, 1888, §
p. X7, 27th proof by C. W. Tyron, Louisville, Ky.; -
Beman-and Smith's Pilane and Solid Gsom., 1895, p. 88,
. ffig. 5; Am., Math. Mc., V. IV, 1897, P 169 proof
ol I XXXYX; and Heath'a Math. Monographs, No. 2, p. 33, |
- proot XXII. Also The 3chool Visitor, V. III, 1882, !
; P. 209, for an applicatiqn of 1t to & particular case; = - p :
g ‘ Fourrey, p. 87, by Ozanam, 1778, R. WOlf,’1869
3 C . .b. See also "Recreetions in Math. and Phys-
ics," by Ozanam; "Curiosities of Geometry," 1778, by
Zie E. Fourrey; M. Kesger, 1896; Versluys, p. 39
fig.. 39, and p. 41, fig. 41, and a variation is that g -
of Versluys (1914) p. 40, Fig. 41.

o kWt o e .
v
&

D M~

~

~ ax
s

5 Sevgnteen

Extend CA to M and
KB te Q, draw Ml par. to AB.
Extend 0A to T ané DB to 0.
Drew CP par, to AB. Take
OR = HB and draw RS per. %o

HB. )
b Ohvious that aq. AK
i ¥ ; = sum of parts (4 + 5)
| D 3 C+(l+2+ 3= so.}m+aq,
' ~ HG. ¢ sg. upon AB = .
. T ',*‘ L CL/ ﬁ upon BR 1 8q.-. upon HA KR
. - B = 5% + b2, Q.B.D. 3 )
Fig. 118 ‘ ' :
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a, Conceived by the.author, at Fashville, O.)\ : j
~ March 26, 1933, for a high school girl there, while i j
: present for the funeral of his cousin; also see — .
School Visitor, Vol./'20, p. 167. : - - '
.. Db. Proof and fig. 118, 1s practically the .
. same as proof Sixteén, fig. 117. J . ‘ ]
. - On Dec. 17, 1939, there came to me this: Der
Pythagoreische Lehrsats von Dr. W. Leitzmann, 4th ,
Edition, of 1930 (1st Ed'ny 1911, 2nd Ed'n, 1917, :
3rd Ed'n, )s. in vhich appears no less than 23 S ,
proofs of the Pythagorean Proposition, of which- 21 . ' : .
were among my proof herein, - -
This 1ittle book of 72 pages.is an excellent ) -
treatise, and the bibliography, pages 70, 71,. 72, 1s — : S
valuable for investigators, listing 21 works reqthis '
theorem. Ao
;My'manuscript for 2nd edition, credits. this

work for ali 23 proof therein, and gives, as new
procof, the twé not included in the said 21.

P e b 0 2 Aot B Wi+ emtmins o e e+ e
.

[ ~

X e - In fig. 119, the '~
~ dlssectlon is evigent,and
shows that parfs 1, 2 and 3 -7 |
in sq. HG are congruent to - '
parts 1, 2 and 3 in rect. S -
QC; also that parts 4, 5, 6
"and 7 in sq.-HD- are congru-
ent to parts 4, 5, 6 and 7

in rect. QR. v ,
L db‘ éf ) o Therefore, sq. upon,
- ¥R s ¥) AB = sq. upon_ HB + _Sq. upon —_
{ . N\ My . ]2 -
A "L"’"'I\“ [ _,,-\W HA. .. h® = a® + b2, Q.E.D. _ )
E o cl ‘ﬂ: Jk R a. See dissection, ‘ e
3 e . A Tafel II, ih Dr. W. Leitz- -
E - ’ o Fig. 119 mann's work, 1930 ed'n--on - : -
’ e i last leaf of said work. Not

credited to any one, but 1s based on H. Dobriner's )
proofs. o . -

A . . .

&

el

A.‘,,—.r..
k=
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 Nineteen

~

. In fig. 120 drawv GD,
and from F and E draw lines to
GD par. to AC; then extend DB
and GA, forming thé -rect. AB;
.through C and K draw_lines par.
respectivedy to AH and BH, form-

Through points-I; and M draw
line par. to GD: Take KP = BD,
and draw MP, and through L
draw a line par. to MF. :

. Rumber the parts as in
the figure. It 1s obvious that
. the dissected sq's HG and HD,

‘ “givinb 8 triangles, can be ar-

ranged 1n 8q. AK ‘as numbered; that 1is, the 8rtr1's
in sq. AK can be superimposed by their 8 eduivalent :
trits in sq s HG and HD. .. sq. AK = sq. HD + sq. HG.
~ h® = a® + b2, Q.E.D. o

- a. See dissection, Tafel I, in Dr. W. Leitz-

mann work, 1930 ed'n, on 2nd last léaf Not credited
to any one, but is based on J E. B8ttcher's work.

f

' I!g?tx

‘ o_ ?"_ N . :

In fig. 121 the con-
struction 1s_ readily seen,
as also the congruency of

parts, from which 8q. AK
= (quad. CPNA = quad. LAHT)
+ (tri. CKP = tri. ALG)

+ (tri. BOK = quaé. DEHR

+ tri. TFL) +- (tri. NOB

! e 30
.’)Ni ! . = tri, RED).
V- ’

yd © % 8q. upon AB = sq.
CL—-QL—\“( upon BH + sq. upon AH.

ing tri's equal to tri. ABH. - -

- the corresponding dissected

\F
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a. See Math Mo., V IV, 1897, P 169, proof
XXXVIII. _ ,

at

1 { < . y )
' Tugnity Qns. !
- - The construction
and dissection of fig. 122
is obvious and the congru-
ency of the corresponding L
parts being established and
# we find that sq. AK = f(quad.
~ ANMR = quad. AIWK). + (tri..
:CNA = tri. WFG) + (tri. CQM
. tri. AXG) + (tri, MQK o
=_tri. EDU) + (tri. POK ' .
.= tri. THS) +(pentagon BLMOP ———
= pentagon ETSBV) +- (tri.
‘BRL = tri. DUV) S, 8q. upon
. ~HMg. . AB = 3q. updn BH + sq. upon
S " AH, . h?% = a® +D*®
] a. Original with the author of this’ work, :
'_August 9, 1900.- ' Afterwards, on July 4; 1901, I found
same proof in Jury Wipper, .1880, p. 28 fig. 25, as.
given by E. von Littrow in "Popularen Geometrie ,
- 1839; “also see Versluys, p. 42, fig. 43,

°

H

© Tuenty-Two |

— |

Extend CA to Q,"KB - - .
to. P "draw RJ through H, par.
‘to AB, HS perp. fo CK, SU
and ZM par. ‘to BH, SL and ZT
par. to AH and take SV = BP,

. DN = PB, and draw VW pa.r. to~
_AH and NO par. to BP.

; Sq. AK = parts 1+2
+'3 +4-= sq. HD’) + parts
(5+6+7 = sq. HG); 8o dis-
sected part.s of sq. HD + dis-

- sected-parts of sq. HG (by- St
superposition), gqua.ls the
dissected parts of 'sq. AK,

v

w
, .

. awee '
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114 . THE PYTHAGOREAN PROPOSITION ~

: Sq upon AB = 8q. upon BH + sq. upon AH:|
#h® = & + b2, Q.ED. ‘}
a. See Versluys, p. 43, f'ig. 441 ! -
“b. Fig. and proof, of Twent _x-'l‘vo 1s very much
1ike that of TweJ-One. -

4

- TwentyzThree .
After showing|that
.each numbered part found in
“"the sq's HD and HG is congru-
4{\ ent to tha- corresponding num-

3,°D 1s not difficult, it follows
* , that -the sum of the parigs in
sq. AK = the sum of the parts
of the sq. HD + the sumiof
the parts of the sq. HG..
~ the sq. uponr AK
= the sq. upon HD + the sq.-
upon HA. .. h% = a% 4+ b2,
Q.E.D. . -' '
. " a., See Geom of Dr.
~H. Dobr:lner, 1898 also Versluys, p. 45, fig. 46,
- ‘from Chr, ‘Nielson; a;Lso Leitzmahn, p. 13, fig. 15,
»-~1I»thEd'n. : be ST T 2

'  Proceed as in fig.

" 124 and after. congrdency 1s-
establiched, /it 1s dvident
that, since the eight dis-
sected parts of 8q. AK are-

' ing numbered parts found in

.8q's HD and HG, parts ~(1 + 2
+3+4+5+6_+7+81n0
8q. AK) = parts (5 + 6 + 7
+ 8) + (1+2+3+4)1n

°~sq'sHBandHG '

P

__bered part in sq.. AK, which.

congruent to the correspond-'—“
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o 'a 8q. upon ABwa sq. .upon XD +\sq. upon HA. ° \\
5 h? = a® + b% ; o,
. a. See Paul Epstein's (of Straatsberg), col- :
lection ,0of proofs; also Versluys, p. 44, rig. 45; o .
also Dr. Leitzmann's 4th-ed'n, p. 13, fig. 1k. ' ,

R Twenty=Five L ‘ o,
e 4TS ' - ‘ S
N Establish congruency ' o
of, corresponding panrs, then ‘ :
" 1t follows that: sq.-AK C ;
(= parts 1 and 2 of sq. HD x < -
4+ parts 3, ¥ and Sofsq. HG) [ 0 T
.= 8q. HD '+ sq. HG. .. sq. - ' ‘ f f
upon ‘AB. = sq. upon,HD + L5 S St
upon HA, . h® = a® + b2, | _ ' -
-Q.E.D. . o -
.. _B. See Versluys, P. ‘ T,
38, fig. 38. This fig.. is :
similsr to £ig. 111.

e © TIwenty=Six o .

F , - . 8ince parts 1 and 2
' of sq. HD are congruent to
like parts 1 and 2 in sq. R
AK, and parts 3, 4, 5 and 6 ’
_of sq. HG to like parts 3,
4, 5 and’'6 in sq. AK. . sq.
~upon AB = s8q. upon HB + sq. .
upon HA. .. h? = %% b=, =
QE.D = .- . T - RN E
: a. This dissection S
by Fhe author, March 26 SR} ,
S Yo 1933, e o \ .
m'l.é‘? c L S ‘ ‘“'—""*‘*“ n N ’ :

[EICmVRE— 1

a

I S B

W e T T
-~
©

e e &
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THE PYTHAGOREAN PROPOSITION

(0 CESRNY"

- Fig. 129

I!ggi!:§2!2é

- Take AU and CV = BH
and drav ‘UW par. to 4B and
VT par. ‘te BK; from T draw .

BH locating pts..L and S;

compléte the sq's LK and.S8Q,

making sides SR-and LM pur.

to AB, Draw SW par. to-HB -

~maﬁdACJ par. to AH. -The 10

. parts found in sq’'s HD and
HG are oongruent to corre-

- sponding parts ‘in ag. AK. ..

. the 8g. upon AB =
+ 8q. .upon HA, .\ h2
.Q.E/D.

a. This proof and dissection, vas sent to

1933.

- ¢, It 18 &

me by J. Adam?, Chsssestreet 31, The Ha%ue, Holland,
April 5

- b. Al lines are either rerp. or par. to the’

sides. of the tri. ABH--a unique dissection.

-

‘fine paper - and scissors exercise.f

Iugnz‘zglnht

_ i ,
A Drav AF and BE; pro- .
duce GA,to P making AP = AG;
produce DB to 0; draw CQ par.
to AH and KR par. to BH; con-
struct sq. LN = sq. 0Q; drayw

" FL and FN; take AT and KS -

' = to FM. Congruency of cor-
responding numbered parts hav-
ing been established, as 1s

5 easily done, 1t féllows that: .

8q. upon AB = sq. upop:HB

+ 8q. upon HA,

Q.E.D.

TL par. to AH and TS par. to -

sq. upon HB

o h2 = 82 + bzo

“

P Ly 7%
a >

L I

R

T
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: 8. Benijr von Gutheil, obérlehrer at Nurr- \

* berg, Germany, producéd the above proof. He died in TN

the trenches in -Franse, 1914. 'So wrote. J. Adams -

(vee a, rig.-128), August 1933, T .

' ,% b, Let us call it the B. von Gutheil World

War Proof. S ' R

. .. . Also see Dr, Leitzmann, p. 15, fig, 18,
. | " 190edn. /o | o

- m—— i . ~ B
. N ¥ N » N 5

Twenty-Nine I _ e —

. In-fig. 130, extend -
- CA to 0, and draw ON and KP A . -
- par. to AB and BH respective- ‘ ]
1y, and. extend DB to R. Take f L
BM = AB ‘and draw DM.. Then , . ol
we havs sq.! AK = (trap. ACKP S L]
= trdp.” OABN =' pehtagon ;o T
. OGAHN) + (tri. BRK = trap. 2 S
BDLE + tri. MHL = tri. OFN) | - |
+(tri;"PRB = tri. LED), . - i
8q. upon AB = sq. upon BH" f
+ 8q. upon AH. .~ h% = g2+ b2,
a. See Math, Mo., V. . : ,
, TV, 1897, p. 170, proof XLIV. |

4

Thirty - a
. o A

: Fig. 131 objectifies
the lines to be drawn and
how they are drawn is readily
seen. “ ‘

' Since tri. OMN = tri.

ABH, tri. MPL = tri. BRH,

- 4ri. BML = tri. AOG, and.tri. .
¢ 08SA = tri. KBS (X is the pt. ..
! V1T of Anterséction of the lines . ¢
\ \ ' 'MB and 08) then sq. AK = trap.

. | ‘vy  ACKS & tri. KSB = tri. KOM
Cho oL 3K o L ipap. BMOS + tri, 0SA - . .i.
' g b1 = quad. AHPG + tri. ABH

g . - -
% . o
. ~ —y
¢ . - -
. ’ - .
-
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-A0G + tri. BRH = (pentagon AHPOG +-tri. OFF).+ (trap. i ' b
PMNF i=.trap. RBDE) + tri. BBH = sq. HG + sq. HD. ' ' '
'8q. upon AB = sq. upon HD + sq. upon AH, .~ h®= aﬂ+4crz

—ia, See Sci. Am., Sup., V. 70, p. 383, Dec. 10,
1910. It 1is No. 14 of A. R. Colburn's 108 |proofs.

%

a

S

+ tri, BMIJ + tri, MPL = quad. AHPO + tz:i.‘ OMN + tri. ' 1

X

[N

Thirty=gne

Extend GA making AP . - L
= AG; extend DB msking BN -
= BD = CP, -Tri. CKP = tri, . .
ANB = % sq. HD = % rect. LK, . ’
Tri. APB. =% sq. HG = ,g tect. :

AM, Sq.AK--rect A L
+ rect. LK. _

* 8q. upon AB = sq."
upon HB + sq. upon AH. - .’h%
= a® + b%, Q.E.D. - '

. a. This i3 Huygens' ]
-""----NK - proof" (1657), see also Ver-. . |
Fig. 132 sluys, p. 25, -fig. 22, ’

4

Thirty -I!Q ' -

: Extend GA making AD o
='AC. Extend DB to N, .draw o
CL and KM. Extend BF to S )

£ making FS = HB, complete sq.
" SU, draw HP par." to AB, PR
Y par. to AH, and .draw SQ.

\

/% Then, obvious, sq.
-AK = 4 .tri; BAN + sq. NL

= rect. AR + rect. TR + sq-.
GQ = rect. AR + rect QF
+ 8q. GQ + (sq. TF = aq. ND)
= sq. HG + sq. HD. . sq.
uwpon AB = sq. upon BH. + sq

, upon AH. .. h® = a2 + p?,
"Mg. 133 'Q.E.D.

e ———— L —— e —
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: "a, Thls proof {3 credited to Miss E. A. /
Coolidge, & blind girl, See Journal of Education,”

- V. XXVEIIL, . 1888, p: 17, 25th proof.

b. The reader wi%l note that this proof em-
ploys -exactly the same dissectlon and arrangement as
found in-the solution by the Hindu mathematician,
Bhaskara. . 8ee fig. 324, proof Two Hundred Twenty-

”Five.z

~—

i

(b) THOSE PROOFS ‘IN WHICH PAIRS OF THE DISSECTED
PARTS ARE SHOWN.TO BE EQUIVALENT
As the triangle 1is fundamental in the deter-
mination:of the equivalency of two areas, Euclid's
proof will be gilven first place.
. S

.
;

£
!

"“‘Todhunter, 1887, Prop. 47, Book I.

_ Book II.

<

Draw HL perp. to CK,
and draw HC, HK; ADan: BG.
3q. AK = rect. AL.+ rect. BL-
=2 tri, HAC + 2 tri, HBK
= 2 tri. GAB + 2 tri. DBA i
= sq. GH + sq. HD. ~, -8q. upond
AB = sq. upon BH + sq. upon AH,
a. Euclid, about 300.

proof, and it has found a'place

B.C.. discovered the sbove. - e

/

Yol vk

/

"
|
! |
;!: ' *"_A\l‘
) %
!

. Fig. 13k

s

.

in/ very.standard text on ge-

Logically no better .

om try.,
p oof can be devised than Eu-

é¢id's.

. *For the old descrip«
tive form of this proof see Elements of Euclid by
For a modern mod-
‘el proof, second to none, see Beman and Smith's New
Plane and 86114 Geometry, 1899, p. 102, Prop. VIII,
Also see Heath's Math. Monographs, No. 1,
1900, p. 18, proof I; Versluys, p. 10, fig. 3, and .
p. 76, proof 66 (algebraic), Fourrey, p. 70, fig. a; o

-

/
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also The New South Wales Freemason, Vol XXXIII No.
4, April 1, 1938, p. 178 for a fine proof of Wor.
Bro. W. England, F.S8.P., of Auckland, New Zesland.

~ Also Dr. Leltzmann's work - (1930), p. 29, fig's 29
and 30.

I have noticed lately two or three Ameri-
can tex s on geometry in which the above proof does :
not appear. I suppose the author -wishes to show his
originality or independence--possibly up -to-datenéss.
He 'shows something else. The leaving out of Euclid's
proof 1s like -the play of Hamlet with Hamlet left
out. .

c. About 870 there worked for a time, in Bag-
dad Arabia, the celebrated physician, philosopher
and mathematician Tabit ibn Qurra ibn Mervan (826~
90;..)'., Abi-Hasan, al Harrani, a native of Harrén 1n
Mesopotamia. He revised Ish3q ibn Honeiu's transla-
tion of Euclid's Elements, as stated at foot of the

!

~

__photostat.
- See David Eugene Smith's "History of Mathe-
(1923); Vol..I, pp. 171-3.
d. The figure of Euclid's proof Fig. 134
" above, 13 known by the French as pon asinorum, by the
~Arabs as the "Figure of the Bride."
e. "The mathematical science of modern Eurore
" dates from the thirteenth century, and received 1ts
first stimulus from ‘the Moorish Schools in Spain and
Africa, where the Arab works of Euclid, Archimedes,
: Appollonius and Ptolemy were ‘not uncommon....."
_ "Fipst, for the geometry. As early as 1120
_an’ English monk, named Adelhard (of Bath), had ob-
tained a copy of a Moorish edition of the Elements of
Euclid; and another specimen was secured by Gerard of
Cremona in 1186, The first of these was translated
by Adelhard, and a copy of this fell into the hands
of Glovanni Campano or Companus, whe in 1260 repro-
-duced 1t as his own. The first printed edition was
taken from it and was 1ssued by Ratdolt at Venice in
1482." A History of Mathematics at Cambridge, by
W. W. R. Ball, edition 1889, pr. 3 and 4.

matics,"

1

»”
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P!’IHAGOREAN THEOREM IN TA'BIT IBN QORRA'S MBIATION
oF EUCLID '

The translation was made by Ishdg 1bn Honein (died 910) but
wag revised by Tébit ibn Qorra, c. 890. This matiuscript was
. written in 1350.
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AR
Thirty-Four
. Extend HA to L making
AL = HE, and“HB to N making
/\ﬁ , BN = HF, -draw-the perp. HM,
AR : E . and . join 10, HC, and KN. Ob- -
Q/ " ‘\' N AN viously tri's ABH, CAL and
A TN

BKN are equal. . sq. upon #AK

. )
\ />b = rect. AM + rect. BM = 2 tri.
)b ' s HAC + 2 tri, HBK = HA x CL

I S T e |

id U B + HB x KN ="sq. HG + sq. HD, —~ ‘

Lo TN . .8q. upon AB = sq. upon_ HB

Nty : Yo + sq. upon HA. .~ h® = a2+ b2 |

‘ NV /f\J d. See Edwards' Geom,, |

= A (}\y IM Yo pP. 155, fig. (4), Versluys, | ©
—~£ e e . P. 16; fig. 12, credited to |
Fig. 135 .. De Gelder (1.806). E —
i

- sclousness, and to extend the growing self 18 one

carded nonsense.'" Bertrand Russell. R

. relations."

b. "TPo 111uminé and enlarge the fleld of con-

reason why we study geometry.- -

"One of the chief services which mathematics
has rendered the human race in the past century 1s
" to put 'common sense! where it belongs, on the top-
most shelf next to the dusty canister labeled 'dis-

. c. "Pythagoras.and his followers found the
ultimate explanation of things in thelr mathematical

of Pythagoras, as of Omar Khayyam:

"Myself when young did eagerly frequent

‘Doctor and Sailnt, and heard great argument
About 1t and about; but evermore

Came out by the same door where in I went."

&

. e P 5 i s N
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"’ HISTORY SAYS:

"Pythagoras, level-headed wise man, vent quite
mad ovér seven. He found seven sages, seven
wonders: of the world, seven gates to Thebes, sev-

en heroes against Thebes, seven sleepers-of -

- Ephesus, seven dwarfs beyond the mountains«-and

so on up to seventy times seven." . ;-

"Pythagoras was inspired--a saint, prophet found-
“et ofa fanatically religious society." (
' "Pythagoras visited Ionia, Phonecia and Egypt, - -

studied. in.Babylon, taught in Greece, committed
nothing to writing and founded a philosophical
society.

‘"Pythagoras declared the earth to be a sphere,

and had a movement in space."
"Pythagoras was one of the nine saviors of civili-

zation." "
"Pythagoras was one of the four protagonists of

o aae

ypes

14,

moderhi“Sc 1ence.

"After Pythagoras, because of the false dicta of

Plato and Aristotle, it-took twenty centuries to
prove that this -earth is neither fixed nor the
center of the universe." '

- "Pythagoras was something of. a naturalist--he was

2500 years ahead of the thoughts of Darwin."
"Pythagoras was a believer in the Evolution of

: mno
M"The teaéhing of Pythagoras opposed’ the teaching

of Ptolemy. sl

, "The solar system as we know it today g the one

Pythagoras knew 2500 years ago."

"What touched Copernicus off? Pythagoras who
taught that the earth moved around the sun, a
great central ball of fire."

"The cosmology of Pythagoras contradicts that of
the Book of Genesis--a barrier to free thought’
and scientific progress." ; .
"Pythagoras say man--not a cabbage, but an ani- '

-mal--a bundle of possibilities--a rational ani-

_ mal,"

15.

"The teaching of Pythagoras rests upon the Social,
Ethical and Aesthetical Laws of Nature.
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N e e s e

(]
> e e o e

e e st

Draw HN par. to AC, -
KL par. to BF, CN par, to AH,
“and extend DB to M, It 1is
evident that sq. AK = hexa-

HNKB = AH x LN + BH x HL
= 8q. HG + sq. HD.,

. '8sq, upon AB = sq.
upon BH + sq. upon AH.

1895, p. 161, fig. (32); Ver-
" sluys, p. 23, fig., 21, cred--

‘e, t,,\

also,-as an original proof,
by Joseph Zelson a sophomore in West Phila ., Pa. s
‘High School, 1937.

b. In'each of the 39 figures given by Edwards .

gOmr ACNKBH = par. ACNH + par.

a. See Edwards' Geom., -

ited to Van Viéth (1805)WM-~‘

~

. fi1g. 1.

—the autnor‘hereox devised the proofs as found herein.

-~ = e e - —p = -
«

In fig. 136, producerHN to P. Then sq. AK
= (rect. BP = paral. BHNK sq. HD) + (rect. AP
= paral. HACN = sq. HG). ;
n sq. upon AB = sq. -upon BH + sq. upon AH.
~ h® = a2 + b2, =
a. See Math, Mo.“(1859), Vol. 2, Dem. 17,

-~

Thirty-Seven

In fig. 137, the~oonstrggﬁ;ggjis evident.

'8q. AK = rect. BL + rect. AL =“paﬂei. BM + paral. AM

= paral. BN + paral. AO-= sq. BE + sq. AF.,

“ 8q. upon AB-= sq. upon BH + sg. upon AH,
a. See Edwards!' Geon. 1895, p. 160, fig.
(28), Ebene Geometrie von G. Mahler, Lelpzig; 1897,

o
4
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p.—80, fig. 60;-and Math,
k . . \E _ Mo., V., IV, 1897, p. 168,

e \ proof XXXIV; Versluys, p. 57,
‘ " N °fig. 60, where it is credit-
. ed to Hauff's. work, 1803,

(g4

- Thirty-Ejght

' In rig. 138 the con- |
struction is evident, as well
as the parts containing like
numerals.

v Sq- AK%~—tri~*BAn
‘\b + tri. CKN + sq. LN + (trl.ACM .

.+ tri. KBP) + tri. HQA + tri.

QHS + sq. RF + (rect. HL = sq.
. HP + prect, AP = sq. HD + rect.
-, GR) = 5q. HD + sq. HG. ~ '
) ~ 8q. upon AB =.sq.
upon BH + sq. upoh AH,

g a. See Heath's Math. .
Monogrsphs, No. 2, p. 33, proof .
HI.,! . . - .

h :sx:!l:i: (.

! WL pmme—

_ Produce CA to P, ~draw PHN, join NE, draw HO
Rl | perp. ‘to CR, CM par.” £6 AH, jofh MK and MA and pro-

S _ duce DB to L. ~From this dissection there results:
... .. | 8q. AK = rect. A0 + rect. BO = (2 tri. MAC =2 tri.,
S - ACM ="2 tri. HAM = 2 trl, AHP = sq. HGB + (rect. BHMK
= 2 tri, NHL = 2 tri. HLN = 2 tri. NEH = sq. HD) :

ST T T T
-
B
1
kY
)
e
-
¥

,‘\
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124° . THE PY'I'HAGOREAN PROPOSI’I‘ION
)'f\ ] o . s sq. upon AB = sq.
G_’," E upon HB Z sq. upon H.A . h?
X N =-a° +'b=, Q.E.D.
N N ' " . a. Devised by the
\ author Nov. 16, 1933 T
AN
Al Forty
v Fig. 140 suggests
C its construction, as all
lines drawn are elther perp.
or par. to a side of the giv-
o en tri, ABH. Then we havé
- L. L,0Q sg. AK = rect. BL + rect. AL
%N, "y = paral. BHMK + paral. AHMC
) 'I.:I\- : ) = paral, BHNP + paral. AHNO
0{{ q\:‘ \ ™ ‘= sq. HD +'sq. HG. . sq.
o \-\ : \,J\E - upon AB = sq. upon BH + sq.
» TP B pon—-A;.. -
<\ : SAEEAERN ) a. This is known as-
= \ ‘“:“ & Hayne"s"prb“df*"“se*é“Math“**Mag-
Ny e -azine, Vol. I, 1882, p. 25, _
Al and-School Visitor, V. .IX,
\ ! ) 1888, p. 5, proof IV; also
: ‘ *"' : see Fourrey, p. 72, fig. s,
| ’,' r\\ | in Edition arabe des Ele:’-
Cw’. .‘L;.‘JK ments d'Euclides. ’
Fig. 140 )
B Forty-Qne
Draw BQ perp. to AB meeting GF -extended, HN
par. to BQ, NP .par. to HF, thus forming OARQ; draw
OL par. to AB, CM par. to AH, AS and KT perp. to CM,
and SU par. to AB,.thus dlssecting 8q. AK into parts
"1, 2, 3, 4 and 5.
Sq. AK = paral. AEQO, for sq. AK = [(quad.
ASMB = quad. AHLO) + (tri. CSA = tri. NFH = tri. OGH)
+ (tri. SUT = tri. OLF) sq. HG] + [(trap. CKUS

-

i

,
PN Yy
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= trap. NHRP = tri, NVW
'fQ + trap. EWVH, since tri. EPR
ﬁ = tri. WNV = trap. BDER)
- E +-(tri. NPQ = tri. HBR) = sq.
. Q‘.‘L.’.J ‘T J-ID]=sq HG .+ sq. HD.

| e SNt 3R s sq. upon AB = sq.
) <’ \\:H,%A\ upon BH + sq: upon HA, . hZ.

: # .

\ = a2 + b2

)

]

i
N ' N
AN ': "D "~ a, This proof and
Y 3’ fig. was formulated by the

author Dec. 12, 1933, to

&

v OO

]
, . \\‘, /r.,"'] show that, having given a |
o : i 2 \:k Y paral.’ an@ a sq. of equal ;
— v 7, N areas, and dimensions of-
: — .c',_,_’__"!_ K * paral. = those of the sq., 4
' 3 ° "the paral. can be dissected | 1
- Fig. 141 into parts, each equivalent '
to a like part in-the square. ]
- ‘ ..
SRS O S —— i Forty=Iwo -
| oo L - I
- ¥ A : __The construction of '
N - fig. ,J_;gﬁg 18 easily seen.
g’- N . Sq. AR = rect. BL + rect. AL
N " Y™ = paral. HBMN + paral. AHNO

/.E . = sq. HD + sq. HG. . sq.
‘.. upon AR = sq. upon BH + sq.
\ - upon AH. ‘h2==a. + b2 )
f‘D a. This is Lecchio's
proof 175} Also see Math.
Mag., 1859, Vol. 2, No. 2,
,Dem, 3, and credited to
Charles Young, Hudson, O.,
_(afterwards Prof. Astronomy,
Princeton College, N.J.);
Jury Wipper, 1880, p. 26,
fig. 22 (Historical Note),
Olney 3 Geom., 1872, Part III, p. 251, 5th methog;
Jour. of Education, V. XXV, 1887, p. hod, fig. III;
Hopkins' Plane Geom., 1891, P. 91, fig II; Edwards'

s

C;._.'. - !L..1 K

Fig. llL2

1y .
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Geom., 1895, p. 159, fig. -(25); Am, Math, Mo&+;V

126

1897, p. 169, XL; Heath's Math. Monographs, No. 1,

1200, p. 22, proof VI; Vereluys, 1914, p. 18, fig.
1)*" . s

b. One reference says: "Thie proof is but a

‘particular case of Pappus' Theorem." "

c. Puppus was a Greek Mathematician of Alex-
andria, Egypt, 3uppos=d to have lived between 300 8&nd
400 A.D, ‘

d. Theorem of Pappus. "If upon __I two sides
of any triangle, parallelograms are constructed, (seeﬁ

- fig.- 143), their sum equals the possible resulting
' parailelogram determined upon the third side of the

triangle.”

e, See Cnauvenet's Elem'y Geom. (1890), p.
147, Theorem. 17. -Also see F, €. Boon's proof, 8a,
p. 106. '

£, Therefore the .- So-called Pythagorean Propo-
sition 1is only a particular case of the theorem of
Pappus, see fig. 144 herein.

IV;___ii,n<_“-imﬂJ

L .

|

el T Ny T iy

o o e ot i

- 4

Gusd

‘\_ - ‘ .

Let ABH be any triangle, upon BH and AH con-

struct any two diaeimilarfparallelograms BE and HG;

produce GF and DE to C, their -
point of intersection; join C and
H and produce. CH to L making KL .
=/ CH; ‘through A and B draw MA to
N making AN = CH, 'and OB to P mak-
ng BP =CH,
. Since tri GAM = tri. FHC,;
being equiangular and side GA
f= FH. .~ 'MA = CHz- AN; also BO
j= CH =.BP = KL.)sParal EHBD .
o+ paral. HFGA = paral. CHBO
'+ paral. HCMA = paral. KLBP
+ paral. ANLK = paral. AP,

" Also parsal. HD + paral HG
= paral. MB, as paral. MB = paral.
AP. ‘

“"N-—s.._..__,._____ —_—

‘.\""

Theorem _of. PQEEDS o I
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e o a4

- e A“S”paral”“}m “and paral. HG aPfe not similar, S \ ~
it follows that BHZ + HA® # ABZ2, ' o -]
- b. See Math. Mo. (1858), Vol. I, p. 358 Dem. e P
8, and Vol. II, pp. 45-52, 1in which this’theorem 1s ' .

.given by Prof. Charles A. Young, Hudson, 0., now As- :
tronomer, Princeton, N.J. Also David E. Smith's
Hist. of Math.. Vol. I, pp. 136-7.
© c¢. Also see Masonic Grand Lodge Bulletin, of
Iowa, V6l. 30 (1929), No. 2, p. 44, fig.; also Four-
2 ‘rey, p. 101, Pappus, Collection, IV, 4th century,
T A.D.; also see p. 105, proof 8, in "A Companion to
: ok | Elementary School Mathematics," (1924 ), by F. C. Boon,
A.B:; also Dr. Leltzmann, p. 31, fig. 32, 4th Edition; - ,
also Heath, History, II, 355. ° 1 -
d. See "Companion to Elementary School Mathe-
matics," by F. C.:Boon, A.B. (1924), p. I¥; Pappus—
lived at Alexandria about A.D. 300, though date is un- )

‘certain., - ‘ . “

e. This Theorem of Pappus is a generalization\— - 4 ’
——of the Pythagoreen Theorem.”“Therefore~the~Pythagoreenw—f— - - -
_Theorem is only a corollary of the Theorem of Pappus.

VN SRR e S e e o e s
l

e e e & e e ——y

Egzizzlhigz

. By theorem of Pappus, - f
MN LH. Sinoe angle BHA 1is |
& rt. angle, HD and HG are
rectangular, and assumed
.squares (Euclid, Book I, Prop.
47). But by Theorem of Pap-
pus, paral HD + paral. HG

paral “AK, -

-~ o8q ~-upon AB = sq. 4
upon BH + 8q. upon HG. & nZ%
=42 + b2

.ga By the author, .
Oet. 26, 1933,

o
i
H

3

o0
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R % .Eerty-Four '
- | ’ . Produce DE to L mak- —
‘ ing EL = HF,  produce KB to 0, | _ '
and draw LN perp. to CK. 3q. , -
= ) "AK = rect. MK + rect. MC' |
‘ = [rect. BL (as LH = MN) .
=_sq. HD] .+ (similarly, sq. -
- 7D HG.)T : ‘
, \’sq uponAB, sq. . . ‘ )
. _ P upon HB + sq. upon HG““”"‘ h® ‘ o o
. : | o B e E T A
’ | o) ' ~ a. See Versluys, p.
o R 19, fig. 15, where credited
S . cl___N_IK e Na;ir—Ed-'-Din_~(1§01;3.274);'
. ; . also Fourrey, p. .g. 9.
e - Fig. W5 , - y‘,ph7, A8-9Q‘
X I B - : E _E.j.vg ’
T T | T T ,;...,.;P.m::“‘*“ ) o In fig.f 71156 extend : —
;“‘ A P 20N _ DE and GF to P, CA and KB to
S fo' SN 1 Q and R respectively, draw CN- | ., ,.
. S A Yog par. to AH and draw PL and ‘
' : KM perp. to AB and CN respec-
. "f . ‘tively. Take ES = HO and
) draw D3, - - A
) J - S8q. AK = tri. KNM
! , .+ hexagon ACKMNB = tri. -BOH
1 . i : N + pentagon ACNBH = tri. DSE )
o ) o '+ pentagon QAORP = tri. DES
" B » ) v '»:.‘«\. : + paral. AHPQ * quad. PHOR
.{‘ o I R L C‘u:__l'-.\;‘l"‘ = sq. HG + tri. DES + paral.
’ : , -BP ~ tri. BOH = sq. HG + tri.
, rigo Ih’6"""’"“‘”7 =T DES + tr&p. HBDS sqa HG
- ) + sq. HD, o .
' o s 8q. upon AB = 3q. upon BH + sq. upon AH. : :
-~ : -° _a., Se¢ Am, Math. Mo., V. IV, 1897, p. 170, | +
T proof XLV ' Z
; PR - T
AR ( : S
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Forty=Six
y . ) The ¢onstruction
’ needs no explanation; from it
- we get sq. AK + 2 tri, ABH i
= hexagon ACLKBH = 2 quad.
ACLH = 2 .quad. FEDG = hexagon .
. ABDEFG = sq. HD + sq. HA + 2

tri, ABH.
: " sq. upon AB ; sq. .
v upon BH + sq. upon AH, .~ h® .
| ! = a® + b2
- / [ 8. According to F, C, ,
G'( { k- Boon, A.B. (1924), p. 107 of L
T his "Miscéllaneous Mathemat-
N7 ics," this proof 1s that of
- yh * Leonardo da Vinei (1452-1519). - :
Fig. W7 - - - b.'See Jury Wipper, . . L

) 1880 p. 32, fig. 29, as
found in: "Aufangsgrunden der Geometrie" von Tempel- .
hoff, 1769; Versluys, p. 56, fig. 59, where Tempel-
hoff, 1769, i1s mentioned; Fourrey, p. T4#.  Also proof
9, p. 107, in "A Companion to Elementary School Mathe- .
matics," by F. C. Boon, A.B.; also Dr. Leitzmann, N
P. 18 fig. 22, 4th Edition.

Forty-Seven - \

In fig. 148 take BO
= AH @and AN = BH, and com-
plete the figure; Sq. AK
= rect. BL + rect. AL = paral. L
HMKB + paral. ACMH = paral.,
FODE + paral. GNEF = sq. DH
+ sq. GH. ’
S © % 8q. upon AB = sq.
‘upon BH + sq. upon AH., . hZ®

o e bt e e

. | *: . = a® + b2, f
: L ’ a. See Edwards' Geom.,
Cl_ - JL K . 1895, p. 158, fig. (21), and
Fig. 148 :
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O

Am. Math. Mo., V. IV, 1897, p. 169 proof XLI. 5

L

Forty=Eight ;

;7 In fig. 149 extend
CA to Q and complete sq. QB.
Draw GM and DP each par. to
AB, and draw NO perp. to BF.
This construction gives sq. |
AB = sq. AN = rect. AL + rect.
PN = paral. BDRA + (rect. AM
= paral. GABO) = sq. HD + sq.
HG. \ o
. ** 8q. upon AB = sq.
upon BH + sq. upon AH, . h®
= a? + b2,
a. See Edwards' Geom.,
. : 1895, p. 158, fig. (29), and
Fig..1lh9 Am, Msth, Mo., V. IV, 1897,
- . Pp. 168, piroof XXXV,

. "g"
oli___k

e

Forty-Nine

F } In fi1g. 150 extend
‘,’\\ : ;P KB to meet DE produced at P,
g \ AE draw.QN par. to DE, NO par.
G _s MR 8K % |
E——1T— A \g ‘to BP, GR and HT par. to AB,
N =T\  extend CA to 8, draw HL par.
o ND  to AC, OV par. to AH, KV and
— oMU par.— to BH, MX par, to-AH, -

AN u'\«‘ ; extend GA to W, DB to U, and
: SNNOIN ,draw AR and AV, Then we will
, el)ty\\J have sq. AK = tri. ACW + tri,
A IM CVL, + quad. AWVY + tri. VKL
Cic - =K + tri., KMX + trap. UVXM
N ) + tri, MBU + tri. BUY = (tri.
Fig. 150 GRF + tri. AGS + quad. AHRS)

~+ (tri, BHT + tri. OND + trap.
‘NOEQ + tri. QDN + tri. HQT) = sq. BE + sq. AF.

i A A A Bk at AN L
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z sq. upon AB = sq, upon BH + sa. upon AH,
~ h? = a2 + p2

a. This 1s E. von Littrow's proof, 1839; see
also Am. Math. Mo., V. IV, 1897, p. 169, proof XXXVII.

Eifty )
Extend GF and DE to
P, draw PL perp. to CK, CN
par. to AH meeting HB extend-
“ed, and KO perp. to AH. ‘Then
there results: sq. AK

[ (trap. ACNH - tri. MNH

= paral. ACMH-= rect, AL)
(trap. AHPG - tri, HPF
sq. AG)] + [ (trap. HOKB
tri. OMH = paral. HMKB

|
I |
-~ TN ) = rect. BL) = (trap. HBDP
AR RRT - tri. HEP = sq. HD)]J. )
Chke __ 1L MK ., 8q. upon AB = sq.
. : upon BH + sq. upon AH, .: h?

Fig. 151 = a? + b2,

: ' . a. See Am. Math. Mo.,
V.. IV EL897, p. 169, proof
XLII. .

Fifty-One

-

Extend GA. to M makipg

oo oAl

. AM = AH, complete sq. HM,
draw HL perp. to CK, draw CM

this construction gives: sq.
AK = rect. BL.+ rect. AL

= 8q. BP + sq. HM = sq. HD
+ sq. HG., » .

’ s -8q. upon AB = sq.
~ upon BH + sqg. upon AH, .. h®
] = a® + b2, -

"par., to AH, and KN par.: to BH;

—-=-paral. HK + paral-HACN--- - -

P

R ——
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) . a. Vieth's proof--see Jury Wipper, 1880, p. . N
24, fig. 19, as gilven by Vieth, in "Aufangsgrunderi - ,
. der Mathematik," 1805; also Am, ‘Math. Mo., V. IV, . 5
1897, P. 169, proof xxxvx ‘ '
‘ -E-Lt.ix:lua ’
In fig. 153 construct i i
the sq. HT, draw GL, HM, and
PN par, to AB; also KU par.
v to BH, 03 par. to AB, and
, join EP, By analysis we
- find that sq. AK = (trap.
- CTSQ + tri. KRU) + {tri. CKU
+ quad. STRQ + (tri, SON
. = tri. PRQ) + rect. AQ] )
B = (trap. EHBV + tri. EVD)
+ [tri. GLF + tri, HMA
" _ + (paral. SB = pardal. ML)]
- - . = sq. HD + sq. AF.
Fig. 153 . < 8q. upon AB = sq.
o : upon BH + .sq. upon AH, .. h® _
= a®+ b%. Q.E.D. - T ‘
a. After three days of ‘analyzing and classi-
‘fying solutions based on the A type of figure, the
above dissection occurred to me, July 16 1890 from ‘
which I devised above proof ‘
Eifty-Three
In fig\iSll» through
K draw NL par. tor AH, extend
N HB to L, GA to O, DB to M,
draw DL and MN par. to BK, .
e [ and -CN—par:-—-to—A0; : T
¥ ) Sq. AK = hexagon g
: \\’ /’ :\\ : ACNKBM = paral. CM + paral
) i . N ‘KM = sq. CO + sq. ML = s
g "'STP ! ')“" m>+sg.m} : ' q A
S U: e \ Jk/’ ) -~ sq. upon AB ="8q. '
L TTo upon BH + sq. upon AH.] 3
;*E? 7 TFig. 154 e |

T e
——
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a. See Edwards' Geom., 1895, p. 157, fig.
(16). T

-

Eifty-Four B

' ' In fig. 155 extend
HB to M making BM = AH, HA to
P making AP = BH, draw CN
and KM each par. to AH, CP
and KO each perp, to AH, and
draw HL perp. to AB. 8g. AK
= rect. BL + rect. AL = paral.
: RKBH + paral. CRHA = sq. RM
9(‘ + 8q. CO'= sq. HD + sq, HG.
\\\ ‘ .. 8q. upon AB = sq.
; upon BH + sq. upon AH, .. h
ZM7 o a2 4 p2, "
. a. See Am, Math, Mo.,
V. IV, 1897, p. 169, proof”
XOIIT.

-t S Fifty-Five

T 6. ... . . Extend HA to N making

o <—;§F . AN = HB, DB and GA to M,

P I 7N £ draw, through C, NO making -

’ CO = BH,' and join MO and KO.
Sq. AK = hexagon

g T I b A — -

*
R LT

- -

% ACOKBM = para, COMA: + paral.
"KBM*“"sq““HD”*'Bq
. 8q. upon AB = sq.
.upon BH + sq. upon AH, .. h®
= a2 + b2,

» &, This proof is.
credited to C. French, Win- -
chester; N.H, 8Seé Journal of
~ Educatlon, V. XXVIII, 1888,
“'P. 17, 234 proof; Edwards'

- Geom., 1895, p. 159, fig. (26);
~ Heath's Math. Moncgraphs, No.
2, p. 31, .proof XVIII,

L
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Elfty-S8ix

Complete the sq's OP
and HM, which are equal.
Sq. AK = sq, LN -4
tri. ABH = sq. OP - 4 tri.
" ABH = sq. HD + sq. HG. ... sq:

upon AB = sq. upon BH'+ sq.
. upon HA. . h® = a2 + b?_,
Q.E.D. '

a. See Versluys, p.
54, fig. 56 taken from Del-
boeuf's’ work, 1860; Math. Mo.,
1859, Vol. II, No. 2, Dem.ls,
fig. 8; Fourrey, Curios.’

" Geom., p. 82, fig. e, 1683

v

3 even
- Complete rect. FE and
construct the tri's ALC and
KMB, each = tri. ABH..
It 1s obvious that
.”sq. AK = pentagon CKMHL - 3
tri. ABH = pentagon ABDNG
- 3 tri,cABH = sq. HD + sq.

! .
oo : N\, HG. . sq. upon AB = sq. upon
N > HD + sq. upon HA. .'.h2= 2
\ [ 2 :

\Gi_ H ,/'M + b“. J
"N e = a. See Versluys, p. 55,

- ' ‘Fig'o . 158 fig . 57

” tirszzninni

LI 4

In fig. 159 complete the squares AK, HD and
HG, also the paral's FE, GC, AO,

PK .and BL. From

.
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these we find that sq. AK .o
= hexagon ACOKBP = paral. . b
- OPGN - paral. CAGN + paral.

" POLD - paral. BKLD = paral.’

LDMH - (trl., MAE + tri. LDB)

D4 paral GNHM“*“(tri [GHA .

), tri HMF) = sq. HD + ‘sq. HG.
' 8Qq. upon AB = sq. upon BH _ )
+ sq. upon -AH., .. h® = a®+bv%, ‘

‘ a. See Olney's Geom‘, ' B |
University Edition, 1872, p. : .
251, 8th method; Edwards' .~ : - :

- Geom., 1895, p. 160, fig.
(30); Math. Mo., Vol. II .
1859, No. 2, Dem, 16, fig. 8 -~ * {1 - 8
and W. Rupert; 1900. | o A
. ) o s

Inmf‘g. 159, omit lines GN, LD, EM, MF and
MH thep the dissectlion comes. to: sq. AK = hexagon - _
ANULBP - 2 tri. ANO = paral. PC + paral. PK = sq. HD ° o
+ 8q. HG s 8q. upon AB = sq. upon HD + sq. upon HA., ‘
~ h® = a® + b2, . Q.E.D. - _ .
. a, See Vérsluys, p. 66, fig.~70 - “ : 1
- 4

- ‘§liix

- ___In the figure draw. - |
the diag's of thé sq's and ' U ‘
‘draw HL." By the arguments - o
established by the dissec- ° ‘ R

) tion, we have quad, ALBH . ‘ .

= quad. ABMN (see proof, fig. ' ..

: 34)

' 8q. AKfs 2 (quad. AKBH - -
- tri. ABH) = 2(quad. ABDG S '

- - tri. ABH = % sq. EB + % sq.
‘FA) = sq. HD + sq. HG. - .. sq.
upon AB = sq. upon HD #+ sq.- ]
upon HA. & h® = a? + b2,

-~ . - ,', - B - r_q . -
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" a, See- -Ex Fourrey's Curios. Geom., p. 96
fig. 8.

- Sixty-0ne .
GL. and- DW are each
perp. to AB, LN par. to HB,
QP- and VK par. to BD, GR, DS,
MP, NO and KW par. to AB and °
ST and RU perp. to AB. Tri.
DKV = tri. BPQ. .. AN = MC.
Sq. AK = rect. AP ’
T+ rect. A0 = (paral. ABDS
=.8q., HD) + (rect. GU =paral.

o : - Qi’ 71" GABR = sq. GH). .. sq. upon
A . “ CL...._...,._ ’.Jw AB = sq. upon HB + sq. upon’ '
L o HA. .~ h® = a2 + p%, Q.E.D.
- b _ - Fig'. 161 a, See Versluys, P: -
.. o -28, fig. 24--one of Waner's
s b " coll'n, credited to Dobriner. o
Sixty=Iwo .. . .7

K

Constructed and num-
bered as here depicted, it
follows that sq. AK = ‘[(trap.

= trap. SBDT) + (tri ,
OPQ .= tri, TVD) + (quad. PWKQ

e e

e S e s,

= quad. USTE) = sq. HD]

+ [(tri. ACN = tri. FMH)" -
+ (tri. CWO = tii. . GLF)

+ (quad. ANOX = quad GAML)
= 8q. HG].

-d
o~

) f NZP » 8q. -upon AB sq.a
- . . /4 3 ;. ‘upon BH + sq. uponHA h
" Fig. 162 . 8. See VersluyS, P.

S R 33, fig. 32, as glven by
Jacob. de Gelder, 1806

N aad

®
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, . Extend GF
and DE to N, com-

and extend HA-to P,
GA to R and HB to L.
From these
dissected parts. of
the sq. NQ we see
that-sq. AK + (¥ tri,
ABH + pect. HM
+ rect. GE + rect.

L - PR = sq. HD + 2 tri.

s ABH) + (rect. AL
Cx— — .
YN R . .= 8q., HG +2 tri.
‘ N L7 ABH) + rect. .HM
R X Qy . + rect, GE + rect.
y Fig. 163 , . A0 = sq. AK + (4 tri.

‘ ABH + rect. HM .
+ rect. GE + rect OA - 2 tri. ABH - 2 tri, ABH - rect.
HM - rect. GE - rect. OA = sq. HD + sq. HG.

— - % 8Q. AK = sq. HD + sq. HG. - .

N 8q. upon~AB sq. upon BH + sq. upon.AH
& h? = g% + p?

' - a. Gredited by Hoffmann, in "Der Pytha-,

goraische Lehrsatz," 1821, to Henry‘Boad, of London,
"Eng. .See Jury Wipper, 1880, p. 18, fig, 12; ‘Ver-

plete the square NQ,.

OA) = sq. NQ = (rect.

LA

1

” e
. R .
S N S T O B RO gy T i i Par S TR T S T ¥

PR M ahhh il

o 4

-y

sluys, p:- 53, fig. 55; also see Dr. Leitzmann, p. 20,
fig. 23,
b. Fig. 163 employs 4 congruent triangules,
y congrhent rectangles, 2 congruent small squares,
. 2 congruent HG squares and sq. AK, if the line TB be
inserted. Several variations of proof Sixty-Three
" may bte produced from it, if difference is sought, es-

- pecially if certain auxiliary lines are drawn.

e Gt
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>

_ In fig. 164,
- produce HB to L, HA
to R meeting CK -
Prolonged, DE and .
GF to 0, CA to P,
ED and FG to AB .
prolonged. Draw HN
par, to, and OH
perp. to AB,  Ob-
I viously sq. AK L
{ . = tri. R - (erio -
' \ RCA + tri. BKL

<

QMO - (tri. QAR

+ trd. OHD + tri.-
ABH) = (paral, PANO
8q. HD).
sq. upon HB + sq. upon HA

= sq. HG) + (paralmm
& sq. upon AB =
-‘-hz = a? + 2%,

. &, See Jury Wipper, 1880, p. 30 £ig. 28a;
Versluys, p. 57, fig. 61; Fourrey, p. 82, Fig. ¢ and
d, by H. Bond, in Geometry, Londres, 1683 and 1733,
also p. 89.

Sixty-Five

Infig.—165extend

et i e epore

HB and CK to L, AB and ED
to. M, DE and GF to 0, CA
and KB to P and N respec-
tively énd draw PN Now
observe that sq. AK = (trap.
ACLB - tri, BLK) = [quad. -
AMNP = hexagon AHBNOP - (tri.

: NMB = tri. BLK) = paral BO

'.\' = sq. HD) + (paral A0 =-sq. '
"N AF)]. :

. 8¢. upon AB = 8q.
upon BH + 84. upon AH.

-

@ }
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” a. Deviseql by the author, July 7, 1901, but
suggested by fig. 28b, in- Jury Wipper, 1880, p. 31.
’ . b.'By omittir;a, fnom the f1g., the sq. AK,
and the tri's BLK and BMD, an algebraic proof through
the mean proportional is easily obtailned.

et aan s e

-

-

—

—

§1x1x;§ix
- In the-
construction make
CM = HA = PL, IC
= FP, MK DE = NQ.
, OL = LM and MN ,
- = NO. Then sq. AK
-= trdi, NLM - (tri.
"LCA. + tri, CMK )
.+ tri. KNB) = tri.
LNO - (tri.-OPH
+.tri, HAB + tri.
. QOH) =.paral. PLAH
. + paral., HBNQ =sq. - — -

, . HG. + sq.' HD. .. sq.
) , TN p ) uppn AB = sq. upon
- h‘" , . BH + sq. upon HA.
: S A ~-h® = a® +- b2,
. Fig. 166 'Q E.D.

- a. See Versluys, P. ,
22, £1§. 19, by J. D Kruit-
. bosc,gx

. Sixty-Seven.

. Make AM = AH, BP _
"= BH, complete paral. MC and
PK. Extend FG and NM to L,
DE and XB to S, CA to T, OP
to R, and draw MP.

: | ( Sq. AK = paral. MC
‘.} + paral., PK = paral. LA
\ ' + paral. RB = sq. GH + sq.
s i o - HD. - -
4 Fig. 167 - \|{ )
. (
*
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z s8q. upon AB = sq. upon HB + sq. upon HA.,

.~ h® = a® + v®, “

~— -..——-—‘l’,‘*—.——-——‘-—1

a. Math Mo. (1859), Vol II No. 2, Dem. 19, .

fig. 9. - -

© © From P the middle
-point of AB draw,PL PM and
PN perp. respectively to CK,
DE and FG, dividing the sq's
. AKX, DH and FA into equal
‘rect's,
: Drav EF, PE, OH to R,
PF and PC.
Since- tri's BHA and
EHF ‘are congruent, EF = AB
‘=-AC..-~Since PH = P4, the
<" %pri's PAC, HPE and PHF Have
equal bases. - S
’ :8ince tri's having/ ’
, .. equal bases are to each other
as -their altitudes:- tri. (HPE = EHP = sq. HD + 4)
: tri. (PHF = sq. HG + 4) = ER : FR. ... tri. HPE

+.tr1o PHF : trl. PHF = (ER + FR = AC) : FR, . £ sq..

HD + $,.8q. HG : tri, PHF = AC : FR. But (tri. PAC
= f 8q. AK) : tri, PHF = AC : FR.: = & §G. HD + # sq.
: £ sq. AK tri. PHE = tri. PHF, . ¢t sq. HD ’

o

R : ~ sq. upon AB = sq. upon HB + s8q. upon HA.

+ t sq. HG = § sq. AK. ' B
~h® = a% + b2, Q.E\D. -
a. Fig. 168 is unique in ‘that it %s the first
" ever .devised in which all auxilliary 1lines and all
-triangles usedworiginate at the miidle‘point of the
. ‘hypotenuse. of the given triangle.

b b, It was devised and proved by Miss Ann
Condit, a girl, aged 16 years, of Central Junior-: -
Senior High School, South Bend, Ind., Oct. 1938 This
16-year-old girl has done what no great mathematician,
Indian, Greek, -or modern, is ever reportéd to have
done. It should be known as the Ann Condit ProoT .

-
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Sixty=Nine

$
. Prolong HB to O mak-
ing BO = HA; complete the
rect. OL; on AC const. tri,

tri, CKN = tri. ABH, Join
AN, AK, A0, GB, GD, GE and
FE. —~
. , It is obvious- that
 tri, ACN = tri. ABO = tri.
ABG = tri., EFG; and since
tri. DEG = [4(DE) x (AE = AH
+ HE)] = tri. DBG = [4(DB
DB) x (BF = AE)] = tri, AKO
[4 (KO = DE) * (HO = AE)]
tri. AKN = [4 (KN = DE)
Fig. 169 - ., % (AN-= AE)], then hexagon
ACNKOB - (tri. ONK + tri.
BOK) = (tri. ACN = tri, ABO = tri. ABG = tri. EFG)
+ (tri. AKN = tri. AKO = tri. GBD = tri. GED) - (tri.

"CNK + trl. BOK) = 2 tri. ACN + 2 tri. ABO - 2 tri.

CNK = 2 tri., GAB + 2 tri. ABD = 2 tri, ABH = sq. AK
= sq. HG + sq. HD. T

L sq. upon AB = sq. upon HB + sq. upon HA.
s~ h%? = a® + b%, Q.E.D.

a. This fig., and proof, 1s original 1t was
devised by Joseph Zelson, & junior in West Phlla.,

?

i\Pa., High School, and sent to me by his uncle, Louls
‘'@, Zelson, a teacher in a college near St. Louls, Mo,

on May 5, 1939. It shows a high 1ntellect and a fine

_ mentality. . »

. b. The proof Sixty-Eight, by a girl ‘of 16,
and the proof Sixty-Nine, by & boy of 18, are evi-

dences that deductive reasoning is not beyond our
youth.,

ACM = tri. ABH; on CK const. -
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Theorem. -
~If upon any con-
ventent length,
as AB, three prt-
angles are con-
structed, ‘one
having the angle
opposite 4B ob-
tuse, the second
having that angle
right, and the
third having that
opposite angle
acute, and upon
the sides tnclud-
ing the obtuse, .
right and acute
angle squares are
constructed, then
the sum of the
three squares are
less than, equal
to, or greater
than_the square

I L'/ ! . constructed upon

_ /
- ! AB, according as
o i .
. S ’K‘ . the angle ts ob-.
‘Fig. 170 tuse, right or
. , acute.
& In fig. 170, upon AB as dlemeter describe the

semicircumference BHA. 8Since all triéngiga whose ver-
vertex H' liles within the circumference BHA is ob- )
» - tuse at .H', all triangles whose vertex H lies on that |
circumf'erence 1s right at H, and all triangles whose ‘
4 v vertex Hz lles without saild circumference is acute at
# R Hz, let ABH', ABH and ABH- be such. triangles, and on
T mmm—— sides BH' and AH' complete the squares H'D' and H'G';
on sldes BH and AH complete squares HD and HG; on )




ey

GEOMETRIC PROOFS 143

sides BH, and AHz complete squares HoDz and HaGz. De- |
termine the points P', P-and P2.and draw P'H' to L! S B
making N'L' = P'H', PH to L making NL = PH, and PoHz
tO L2 making NzLa = PoHs, _
o Through A draw AC', AC and ACz; similarly
draw BK', BK and BK3z; complete the parallelograms AK',
AK and AK,.
Then the paral. AK' = sq. H'D + sq. H'A',
(See 4 under proof Forty-Two, and proof under fig.
143); the paral. (sq.) AK = sq. HD + sq. HG; and
paral. AKp = sq. HaD2 + sq. HaG2. o
’ Now the area of ‘AK' is less than the area of _
AK 1f (N'L' = P'H') is less than (NL = PH) and the .
- area of AK, 18 greater than the area of AK 1f (NZL, '
= PaHz) is greater than (NL = PH). , ‘ ;
In fig. 171 construct o .
. rect., FHEP = to the rect.
. FHEP 1n.fig. 170; take HF'
= H'F in fig. 170, and com-
plete F'H'E'P'; in like man-
ney construct FzHEoP> equal
to samé in fig. 170. Since
angle AH'B 1s always obtuse,
angle E'H'F' 1s always acute,
,and the ‘more acute E'H'F' be-
comes, the shorter P'H' be-
comés, Likewlse, since angle
' .. AHoB 1s always acute, angle
rughnql . " EgHoF2"1is obtuse, and the , i
. _more obtuse, it becomes thé L

e e e e e e s e — e -

longer PaHa becomes,
' . 8o first: As the variable acute angle F'H'E
_.approaches its superior limit, 90°, the length H'P! .
-increases and approaches the length HP; as sald vari- = -~ @
able angle approaches, in degrees, its inferior limit,
0°, the length of H'P' decreases and approaches, as
its inferiors1imit, the length of the longer of the _
two ‘lines H'A or H'B, P! then coinciding with either
E' or F', and the distance of P! (now E' or F') from -
a 1ine dravn through ‘H' parallel té AB, will be the
second” dimension of the parallelogram AK' onh AB; as

i
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sald angle FIH'E!' continues to decrease, H'P! pesses
through its 1nferior limit and increases continually
and approaches its superlior limit oo, and the distance
of P' from the parallel line ‘through the correspond-
ing point of H'!' lncreases and again approaches the, )
length HP, * ‘ ]
:..sald distance is always less than HP and

the pa’.rallelog"a.m AK' 1s always less than the sq. AK.

o "And secondly: As the obtuse ‘'variable angle
EzHoFa approaches its inferior 1imit, 90°, thé length

of HzP2 decreases and- e.pproaehes -the length of HP;
-as said variable’ angle approaches 1its superior limit,

° ' 180° the 1ength of HaP2 increases and approaches o {
' in length, and the distance of P from a line through |°
the corresponding Hz parallel to AB increases from 3

the length HP to o, which distanc [1s +the second.
~dimension of the parallelogram AzKz on AB, _ . .
- ~ the said distance 1is always greater -than
HP and the parallelogram AKg 1s always gree.ter than
the sq. AK. : -
* .~ the sq. upon AB = the sum of no ‘oj:herr two.
aquares exc,ept the two squares upon HB and HA. .
- - . ~. the sq. upon AB = the sq. upon BH + the sq.
: upon .AH., - : ‘
: -+ h® = 8% + b?, and never.a'? + b'2,
- &. This proof and figure was formulated by
the e.uthor, Dec. 16, /1933,

E.

This type includes all proofs derived frox~
the figure in which the square- constructed upon the .
hypotenuse overlaps the given triangle and the squares
constructed upon the, legs as in type A, ‘:and the
proofs are based on thé principle of equivalency. T

'
~ . ¢ & .
¢ . . .
1 . . < 3 !
| . : X ¢ ) . i
. X . a $ 1

RN
.

oD
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Seventy-0ne

‘ ‘ Fig. 172 gives a par- '
- _; ticular.proof. In rt. tri. _ L r

)"' « 2 /0 IN ABH, legs AH and BH are equal. _ _
) 4 1 = | \. Complete sq. AC on AB, over- B C-
4 f/\K g'. 3, ;1 }-’ lapping the tri.- ABH, and ex- . )
N | ;7 _ tend AH and BH to C and D, and
N ; . 4
A . p there results 4 .equal equiva-
‘ - lent trit's.1l, 2, 3 and 4.
“Fig. 112 . The sq. AC = tri's
: _ o [(A-+ 2+ 3 + 4), of which -
o tri. 1-+ tri, (2 = 2') = sq. -BG, and tri.~3 + tri. =~
- =) = sq. AD]. . ST L
sq._upon AB = sq. upon BH + sq. upon AH. g : ST
" h® = a2 + b2 - -
- B a. See fig. T3b and fig. 91 herein. ' ' .
" b This proof (better, illustration), by o '
“Richard . Bell, Feb. 22, 1938, He used only ABCD o ]
‘ of fig. 172; also credited to Joseph Houston, a high ” DRI '
" school boy of South Bend, Ind , May 18, 1939. He "
' used the full fig. L N
, ]
. Ssxsn.tx:ly.g ;
- i
b - F . Ta.ke AL = CP and draw
ISFﬁL_.;.; K LM and CN perp. to AH. .
A E > Since quad. CMNP
. = quad. KCOH, and quad. CNHP J
is common to both, then quad. ' S .
PHOK = tri. CMN, and we have: . :
sq. AK = (tri. ALM = tri. CPF .
: , . of sq. HG) + (quad. LBHM :
Fig. 173 . .= quad. OBDE of sq. HD)
Ty 4 (tri. OHB common to. sq's AK

| ‘ and HD) + (quad. PHOK:= tri. CGA of 3q. HG) + (quad.
: A ~t'  CMHP common to sq's AK and HG) = sq. HD + sq. HG.

' "1~ sd. upom AB = sq. upon BH + sq. upon HA. .- n? = a?

F a + b%, "Q.E.D. | S ;= ' h

K a. This prooﬂyfwifﬁ‘fig » discovered by the - _ o
author March 26, 1934, 1 p.m. a B
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A
¥

;§ezea$z:1hnez

F SN S

v o Assuming the. three

c ‘ . squares constructed,” as in _ ’
‘ fig. 174, draw GD--it must - - .
pass through H. oo ®
3q. AK = 2 trap. ABML . .
=2 trd, AHL + 2 tri. ABH . . : - \
+ 2 tri. HBM = 2 tri. AHL N ]
+2(trl. ACG = tri. ALG + tri. .
il LC) + 2 tri. HBM = (2 tri. e
- Fig. 1T AHL + 2 tri. ALG) + (2 tri.GLC
f = 2 tri. DMB) +2 tri HBM .
= '8q. AF + sq. BE." . : 1
) * 2q. upon AB = sq. upon BH + sq., upon AH . “
s h® = a2 + b=, DR ‘
, ~ a, See An. Math Mo., V. IV 1897, p. 250 o : :
. ¥ prodf XLIX. \ , i . ;
. _Seventy-Four .
1 ‘ — .
~  Take HM = HB, and -
j N draw KL par. to AH and ‘MN par.
; e to BH.
/ 8q. AK = tri. ANM
/ - + trap. MNBH + tri. BKL + tri.. |
KQL + quad. AHQC = (tri. CQF
+ tri. ACG + quad. AHQC) -
. * N +.(trap. RBDE + tri. BRH) - ]
Fig. 175 . ° = sq. AF + sq. HD. ' ‘ T
: o . o sq uponAB 8q.
upon BH + sq. upon-AH. .. h? = a2 + b2, ‘
a. See An. Math. Mo., v. Iv, 1897, p 250,
* proof L.
————"b.  1r 0P 1# drewn in place of MN, (LO = HB), -
. the proof 1s prettier, but same in principle. =~ 4 R
E . .. ©. Also credited-to R. A. Bell, Feb. 28,
SR . i 1938. | N /’\ | .
— ./ N )
f
b
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In fig. 176, draw GN
and OD par. to AB.
3q. AK = rect. AQ
+ rect., OK = paral. AD + rect.
AN = sq. BE + paral. AM = sq.
. HD + sq. 'HG ‘
sq "upon AB = sq.
"upon BH + sq. upon AH. .. h?
= a? + b2
a. See Am Math Mo.,
- V. Iv, 1897, p. 250, XILVI. -

GEO@.IB.I.(LRRQOFS ‘ 147

(S

4 W

. . seventy-$ix
. s - . ‘ \ .
A f e In.fig. 177, dray GN
,Gr‘é.-- ;-./16’ and DR par. to AB and LM par.
8.~ \, A LE to AH. 'R 1s the pt. of inter-
f"‘ 7‘1"\ . section of AG and DO. ~
¢\ Sq. AK = rect. AQ .
R \ ﬂz .+ rect. ON + rect. LK = (paral.
A A . DA = 8q. BE) + {paral. RM’

= pentagon RTHMG +._tri. CSF)
Fig. 177 + (paral. GMKC =’trap. GMSC
, + tr. TRA) = sq. BE + sq. AF,
"4 8q. upon AB = sq. upon BH '+ sq. upon AH.
&~ h? = a2 + b2,
' a, See Am. Math. Mo., V. IV 1897, p 250,
proof XLVII; Versluys, 1914, p. 12, fig. 7.

*

: In fig. 178 draw LM
‘throvgh ‘H perp. to AB, and
draw HK and HC.
.8q. AK = rect. LB
+ rect. LA = 2 tri, KIIB+2
tri, CAH = sq. AD + sq.'AF.
S osq. upon AB = sq.
.upon BH + sq upon AH.
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s h? = a + bz /

: a. Versluys, 1914, p. 12, fig. 7; Wipper, Lo
1880, p. 12, proof V; Edw. Geometry, 1895, p. 159, - i :
fig. 23; Am. Math. Mo., Vol. IV, 1897, p. 250, .proof : :

LXVIII; E. Fourrey, Curlosities of Geometry, 2nd Ed'n,
p. 76, fig. e, credited to Peter Warins, 1762

§sxsntx£§hﬁi

Draw HL par. to BK, KM
‘par. to HA, KH and EB,
Sq. AK = (tri. ABH
= tri. ACG) + quad. AHPC com-
mon to 8q. AK and sq. AF -
+ (tri. HQM = tri. CPF)+ (tri.

KPM = tri. END) + [paral.QHOK T :
c ~ . = 2(tri. HOK = tri. KHB - tri. , ,*‘
‘Fig. 179 OHB = tri, EHB - tri. OHB : -
- = tri, EOB) = paral. OBNE] ‘
+ tri. OHB common to sq. AK and sq. HD, . =

* 8q.” AK = sq. HD + sq. AF. N

‘. sq. upon AB = sq, upon BH + sq upon AH, :
s h% = a2 + p? '

a. See Am Math Mo., V. IV, 1897, P. 250,
prooft LI. .
b. See Sci. Am. Sup., V. 70, 1910, p. 382,
for a geometric proof, unlike the above proof, but
based upon a similar figure of the B type.

¢ - Seventy-Nine

~f

F _ In fig. 180, extend DE |

%./..(\’I\..-,.,K‘ to_ K, d€Md draw KM perp. to FB. !
|
[

G RE " . 8q. AK.= (tri. ABH ' |
M\’\, ] \\ = tri. ACG) + quad. AHLC com- |
.iP mon to sq. AK and sq. AF
\ /% + [(tri. KLM = tri. BNH)
'A - ' + tri. BKM = trl:. KBD = trap.
) . BDEN + (tri. KNE = tri. CLF)].
Fig. 180 sq. AK = sq. BE + sq. AF

o
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_ "M 8q. upon AB .= sq,Aupoh BH + sq. upon AH.
L~ h® = a2 4 b2,
. 'a., See Edwards' Geom. , 1895, P. ;61, fig, 5
. (36); Am, Math. Mo., V. IV, 1897, p. 25I, proof LII;
Versluys, 1914, p. 36, fig. 35, credited to Jenny de
BUCIC \ :

Elghty .
- In fig. 181, extend
GF to L making FL = HB and N
draw KL and KM'respectively '
par. to BH and AH.\
- " Sq. AK = (tri. ABH
= tri, CKL " trap. BDEN + tri.
COF) + (trd. BKM =, trl. ACG)-
+ (tri "KOM = tri, BNH)+ quad.
* * "AHOC common to éq, AK and sq..

# -Flg. 181 HD- + sq. HG:. |
' N sq. upon AB = sq.
upon BH +, sq. upon AH, '~ h® = a% + bZ,

4. See Am, Math Mo., V. IV 1897, p. 251

L

' proof LVII.

A

"Eighty-One

.~ In.fig. 182, extend
DE to L making KL HN, and -

. draw ML, //
- _____}tk | Sq. AK/= (tri. ABH
ﬁf ,q)JE = tri. ACG) ¥ (tri. BMK =
"\\ rect BL’ --[trap. BDEN + (tri.
‘ "MKL.g triy BNH)] + quad AHMC
common to sq. AK and sq. AF.
= 85Q. Hﬁ,+‘sq. HG. .- -
> 8q. upon AB = 8q.
upog/bH + sq. upon AH. . h?
2 + b2
om.,‘1895, p. 158 fig."' Y

T 4

ig. 182

a. See‘Eava%dgﬁ

i / P

P . .
)
’ [ ¢ .
i i / . Y]
. . K
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ki

- In fig. 183, extend GF "
SN ‘and DE to L and draw LH..

‘Sq. AK = hexagon AHBKLC
+ paral. HK + paral. HC = sq.
HD + sq. HG.

. .4 8q. upon AB = sq.

upon BH * sq. upon AH. .. h?
= a2 + b2

a. Original with the
. author, July 7, 1901; but old

Fig. 183 ' for 1t appears in Olney's Geom.,

university edition, ‘1872, p.

'250 rig. 374; Jury Wipper, 1880, .p. 25, fig. 20b, as
given by M. v. Ash, in "Philosophical Transactions,"
1683; Math. Mo., V. IV, 1897, p. 251, proof LV;
Heath's Msth. Monographs, No,” 1, 1900, p. 24, proof |
IX; Varsluys, 1914; p. 55,:f1g. 58, credited to Henry |
Bond. - -Based on the Theorem of Pappus. Also see’ Dr.
Leitzmann, p. 21, fig. 25, 4th Edition. l
L " b. By extending LH to AB, an ‘algebralc proof
5 \ can be readily devised, thus increasing the no. of -

simple proofs. T

: / | - -~ In fig. 184, extend GP ~
' and’ DE to L, and draw LH.
f Sq.»AK pentagon ABDLG ¢
(3 tri. ABH = tri. ABH + rect.
LH) + sq. HD + sq. AF. # i
~ 8q. upon AB = 8q. - ¢
upon BH + sq. upon AH. . hZ%
= a2 + b2, -
&, See Journal of Edu-
Lo cation, 1887, V. XXvVI, p. 21, .
. Fig. 184 fig. X; Math. Mo., 1855, Vol.
f -~ I1I, No. 2, Dem. 12, fig. 2.

~
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Eighty-Four

¢ .

!
!
!

In f£ig. 185, extend H
"drav LM perp. to AB, and draw
HK and HC.

Sq. AK = rect. LB
+ rect. LA = 2 tri, HBK + 2 tri.
AHC = sq. HD + sq. HG.
. 8Q. up'on AB = sq. Coe
. P uponBH+sq uponAH s h?
. =, ng. 185 - a2 + b2
. a, See Sci. Anm. Sup.,
V. 70, p 383, Dec. lD, 1910, being No. 16 in A. R.
* Colburn's 108 proofs; ‘Fourrey, p. 71, fig. e. —_—

&.;, x«;,y

— el

Elﬁh.tz:ﬂ!e

- In fig. 186, extend GF
and DE to L, and through H draw
LN, N being the pt. of inter- .. —— - -
section of NH and AB. ,

Sq AK = rect. M3
+ rect. MA = paral, HK + paral.
HC = sg. HD + sq. HG;

- “ 8q. upon AB/= sq.

: upon BH + sq. upon AH., & h®

. = a® + b . ) U B

Fig. 186 . a. See Jury wipper, ‘

’ 1880, p. 13, fig. 5b, andp. 25,
fig. 21, as given by Klagel in "Encyclopdedie,"-1808;
Edwards' Geom., 1895, p: 156, fig. (7); Ebene Geome- -
trie, von G. Mahler, 1897, p. 87, art. 11; Am. Math. -

Mo., V. IV, 1897, p. 251, LIII; Math. Mo:, 1859, Vol.

II, Nq, 2, fig. 2, Dem. 2, pp. 45-52, where credited i

to Charles A. Young, Hudson, 0., now Dr. Young, as- A /9

tronomer, Princeton, N.J. 'I'h:Ls proof 1s an applica- - _

tion of Prop. XXXI, Book IV, Davies Legendre; also

Ash M. v. of Dublin; also Joseph Zelson, Phila., Pa., .
- -a ‘student in West Choster High School, 1939. '

b. This figum will give an algebraic proof.

»
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Eighty=8ix

In fig. 186 it is evident. that sq. AK = hex-
agon ABDKCG - 2 tri. BDK = hexagon AHBKLC = (paral.
KH = rect. KN) + paral. CH = rect. CN) = sq. HD + sq.
HG. s 8q. upon AB = sg. upon BH + sq. upon AH. .. h®
= a® + b, Q.E.D.

a. See Math. Mo., 1858 Vol, I, p. 354, Dem,
8, where it is credited to David Trowbridge.

‘ .b.. This proof is also based on the Theorem
. of Pappus. Also this geometric proof can easily be
conV$rted into- an algebraic proof. .

 Eighty=Seven

/g: In fig. 187, extend DE
C ~~ K to K, draw FE, and draw ‘KM par.
6 /T J\ ”? E to AH.
] \ /ﬁ?\\ 8q. AK = (tri ABH .
\ by = tri. ACG). + quad: AHOC com- i
\' i 7D mon to sq. AK and sq. AKX + tri.
Jfl~ 7 BLH common to sq. ‘AK and sq.

. - HD 4+ [quad. OHLK = pentagon
Fig. 187 OHLPN + (tri. PMK = tri. PLE)
’ + (tri. MKN = tri. ONF).= tri.
HEF = (tri. BDK = trap. BDEL + (tri. COF = tri. LEK)].
= sq. HD + sq. HG. e ' )
) a sq. ‘upon AB = sq. upon HD + sq. upon HG, -~
s h?® = a? + b%, Q.E.D.
" a. See Am, Math. Mo., &. IV, 1897, p. 251
proof LVI, . . -

Elghty-Eight : L

A

. .
- In fig, 188, extend GF and BK to L, and
through H’draw MN par. to BK, ‘and draw KM. :
o Sq. AK = -barai. AOLC paral, HL + paral, HC
= (paral, HK = éq. AD) + sq. 'HG.
S 8q. upon AB sq “upon BH + sq. upon AH.
. h? = 8% + b? . y

./
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a. See Jury Wipper,
1880, p. 27, fig. 23, where
1t says that thils proof was
glven to Joh. Hoffmann, 1800,
by a friend; also Am. Math.
Mo., 1897, V. IV, p. 251,
proof LIV; Versluys, p. 20,
fig. 16, and p. 21, fig. 18
'Fourrey, P. 73, fig. b.

b. From this figure’
an algebraic proof is easily

Fig. 188 _ devised. : :

' c. Omit line MN and

we have R. A, Bell's fig. and a proof by congruency
follows. He found it Jan. 31, 1922, )

:ELahi =Nine
: ‘Extend GF to L making
'FL = BH, draw KL, and.draw CO -
par. to FB and KM par. to AH,
, 8¢ AK = (tri. ABH
E = tri. ACG) + tri. CAO common”

\ to sq's AK and HG +:8q. MH com- |,
'\ mon to sq's AK and HG + [ penta-
' .zjs gon MNBKC = rect. ML + (sq. NL
< = sq. HD)] = sq. HD + sq. HG.

: } “ 8Q. upon AB = gsq.
Fig. 189 upon BH + sq. upon HA. . h2
5 \ = a® + b2, Q.E.D.
' - &: Devised by the author, July 30, 1900, and
. afterwards found in Faurrey, p. 84, fig. c. .

y Minety
In fig. 190 Produce GF and DE to L, and GA

and DB to M. 8q..AK +°4 tri. ABH = sq. 6D = sq. HD

+ 8q. HG + (rect, HM = 2 tpi. ABH) + (rect. 1H = 2

: tri ABH) whence 8q. AK = sq. HD + sq.- HG.

- o ~ 39, upon AB = gq. upon BH + sq. upon AH;

‘ o h® = g2 4+ b2 . )

napele

| ‘ ¥




154 THE PYTHAGOREAN PROPOSITION

3

a. See Jury Wipper,
1880, p. 17, fig. 10, and is
credited to Henry Boad, as
glven by Johann Hoffmann, in
"Der Pythagoraische Lehrsatz,"
1821; also see Edwards' Geom.,
1895, p. 157, rig. (12).
Heath's Math. Monographs, No.
1, 1900, p. 18, fig. 11; also
" attributed to Pythagoras, by

MV W. W. Rouse Ball. Also see
: -. -+ Pythagoras and his Philosophy
Fig. 190 in Sect. II, Vol. 10, p. 239,

1904, in proceedings of Royal
Society of Canada, wherein the figure appears as fol-
lows: : ’ '

. kY - ——
“w»

.- o

Look -

+ Fig. 191

k Tri's BAG, MBK, EMC, AEF,
. LDH and DLC are each = to tri. ABH.
' . 8q. AM = (sq. KF - 4
. } l tri. ABH) = [(sq. KH + sq. HF
ML | -/ 4 2rect, GH) - 4 tri. ABH] = =q.
o ,/ KH + sq. HF.- -

, I . 8q. ‘upon AB = sq. upon

C—IH-LF HB + sq. upon HA. .. h% = a?+ b2
. " __a. See P. C, Cullen's -

Fig. 192 pamphlet, 11 pages, with title,

s

N s e —————— = tna oy
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—

"The Pythagorean Theorem; or a New Method of Demon-

- strating 1t." Proof as above. Also Fourrey, p. 80,
.as the demonstration of Pythagoras according to
Bretschenschnelder; see Simpson, and Elements of Geom-
etry, Paris, 1766.

b. In No. 2, of Vol. I, of Scientia Bac-
calsureus, p. 61,Dr. Wm. B. Smith, of the Missourl
State University, gave this method of proof as new.-

. But, see "School Visitor," Vol. II, No. 4, 1881, for

- same demonstration by Wm. Hoover, of Athens, 0., as
"adapted from the French of Dalseme." Also see
"Math., Mo.," 1859, Vol. I, No. 5, p. 159; also the
same journal, 1859, Vol. II, No. 2, pp. 45 52, where
Prof. John M, Richardson, Collegiate Institute, Bou-
don, Ga., gives a collection of 28 proofs, among
which, p. 47, 1s the one above, ascribed to Young.

. See also QOrlando Blanchard's Arithmetic,
1852, published at Cazenovia, N.Y., pp. 239-240; also
Thomas Simpson's "Elements of Geometryy" 1760, P. 33,
and p. 31 of his 1821 edition. -

_ . s  Prof. Saradaranjan Ray of Indla givés 1t on
pp. 93 94 of Vol. I, of his Geometry, and says 1t
"{s due to the Persian Astronomer Nasir-uddin who
flourished in the 13th century under Jengls Khan."

- Ball, in his "Short History of Mathematics,"

glves same method of proof, p, 24, and thinks 1t 1s

probably the one originally offered by Pythagoras.
- Also see "Math. Magazine," by Artemas Martin,

LL D., 1892, Vol. II, No. 6, p..97. " Dr. Martin says:

"Probably ﬁo other theorem has received so much at-

tention from Mathematiclans or been demonstrated in~

- T *"so mgny different ways as this celebrated proposi-

tion, which bears the name of its supposed discover-‘

€r."

‘c. See T. Sundra Row, 1905, p..1k4, by paper
folding, "Reader, take two equal squares of paper
and a palr of scissors, and quickly may you £now
that AB%? = BHZ® + HAZ."

Also see Versluys, 1914, his 96 proofs, p. 41,
fig. 42. The title page of Versluys is: .

i
JEBURTHNPRIE J: NP |
¥

7 al
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ZES EN NEGENTIG BEWLJZEN
Voor Het ~ ~ °
THEOREMA VAN PYTHAGORAS
Yerzameld en Gerangschikt
DoorM |

J. VERSLUYS =
Amsterdam~-1914 ’ .

g - . v -~

Ninety-Two

In fig. 193, draw KL
‘par. and equal to BH, through
H draw 1M par. to BK, and
draw AD, LB and CH.
: 3q. AK = rect. MK
+ rect. MC = (paral. HK = 2
tri. BKL = 2 tri. ABD = sq.

BE) + (2 tri.. AHC = sq. AF).

; , ,  8q. upon-AB = sq. -
: N H upon BH + sq. upon AH, .~ 1%
/ - Fig. 193 = a® +_ b2, .

/- ‘ a. This figure and
/proof 1s taken from the following work, now in my 1i-,

' brary; the titie page of which 1s shown on the fol-
/ lowing page. - -

i . The figures of this book are all grouped to-
e /  gether st the end of the volume. The above flgure

: 1s numbered 62, and 1s constructed for "Propositio
. A ; XLVII," 4in "Librum Primum," which proposition reads,
; -/ "In rectangulis triangulis, quadratum quod a latere
' / ‘rectum angulum subtedente, describitur, aequuale est
N N o ~els, quae a lateribus rectum angulum continentibus
T describuntur quadratis." :

. . . . B , . .
- : ' -9
' R N - N
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"Euclides Elementorum Geometricorum'
- : Libros:Téedecimf
Isidorum et ' Hypsiclenm
& Recentiores de- Corporibus Regularibus, & - -~
Procli

Propositiones Geometricas

- - - - - - - -
- - - —-— - - - - - -
- - - :. - - , o
- -~ - - - - - e , o=

3 —

Claudius ‘Richards
e §ocietete'Jesu‘SacFrdos,,patria Ornacensis in libero Comitatu
- Burgundae, & Regius Mathematicarum

Profes;or' dicantique

Ph1llppo IIII. Hispaniarum et Indicarum Regi Cath1l1co.

Antwerp1ae, ’ i
. ex Officina Hiesonymi' Verdussii. M.DC.XLV.
o  Cum Gratia & Privilegio"

Then .comes the. following sentence:

"Proclus in hunc librum, celebrat Pythagoram
Authorém huius propositionis, pro culus-demonstra-
tione dicitur Diis Sacrificasse hecatombam Taurorunm.'

‘Following this.comes the "Supposito," then the "Con-
structio,” and then the '"Demonstratio,” which con-

* densed and translated 1is: (as per fig. 193) triangle

'BKL.equals trlangle ABD° square BE equals twice- tri-
angle ABM and rectangle MK equals twilce triangle BKL;
therefore rectangle MK equals square BE, Also’ square
AG equals twice triangle AHC; rectangle HM equals
twice trilangle CAH; therefore square AG- equal rectdn-
gle HM. But square BK~equals ‘rectangle’ kM plus rec-
tangle CM. Therefore squaré BK equals square AG plus
square BD, '

i
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st The work from which the above 1is taken 1s a

" book of 620 pages, 8 inches by 12 ‘inches, bound in

-1t., (E. S. Loomis.) .

-upon the hypotenuse.

8T perp. to OC. Then tge fig. 1s that of Richard A.

vellum, and, though prirted in 1645 A.D., 1s well

preserved. It once had a place in the Sunderland Li-

brary, Blenheim Palace, England, as the book plate

shows--on the book plate is printed--"From the Sunder-

land Library, Blenheim Palace, Purchased, April,

1882." ’ _

The work has 408 diagrams, or geometric fig- 5

ures, -1s entirely in Latin, and highly embellished. - |
I found the book in a second-hand bookstore |

in Toronto, Canada, and on July 15, 1891, I purchased |

'

1 This type includes all proofs derived from-
the figure in which the- ‘square constructed upon the
longer leg overlaps the glven triangle and the square

Proofs by dissection—and superpoattion are
possible, but none were found ,

Minety-Three

. In fig. 194, extend XB
to L, take GN = BH and draw MN
« par. to AH. .Sq. AK = quad. AGOB
, common to sq's AK and AF + (tri.
“=~CO0K = tri., ABH + tri, BLH)
; + (trap.—CGNM.= trap. BDEL) 4 °
F + (tri. AMN = tri, BOF) = sq. HD '
P (T (¢ Z
; S 8Qq. upon AB = sq. upon
- BH + sq. upon AH, .~ h%.= g 2+ 92
a. See Am, Math Mo., V.
IV, 1897, p. 268, proof LIX. |
’ b, In fighl194 ‘omit MN
and draw KR perp. to 0C; then take KS = BL snd draw

\

o

£
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Bell, of Cleveland, 0., devised July 1, 1918, and »
glven to me Feb. 28, 1938, along with 40 other proofs . . 3
through dissec¢tion,. and all derivation of proofs by

Mr. Bell (who knows practically nothing as to Eucli-

dian Geometry) are found therein and credited to him,

on March' 2, 1938. Hé made no use of equivalency.
. , e :

Ninety-Four

o In fig. 195, draw DL par.
to AB, through G drav PQ par. to -
- CK, take GN = BH, draw ON par.
AH and IM perp. to AB, '
Sq. AK =" quad. AGRB com-
mon to sq's AK and AF + (tri. ANO
= tri. BRF) + (quad. OPGN = quad.
ILMBS) + (rect. PK = paral. ABDL
= sq. BE) + (tri. GRQ'= tri. AML)
= 8q. BE + sq. AF. -
. 8q. upon AB = sq. upon
'BH + sq. upon AH., .~ h® = a2+Db2, &
.~ a., Devised -by the author, -
July 20, 1900.

‘a

In fig, ‘196, through G
and D draw MN and DL each par. to
AB, and draw GB. '

Sq. AK = rect. MK + rect.
MB = paral. AD + 2 tri. BAG = sq. _
BE + sq. AF. )

. 8q. upon AB = sq..upon
" BH + sq. upon AH. .. h% = a®+0p2,

- ‘'a. See Am, Math. Mo., V. .
IV, 1897, p. 268, proof LXII.

a

hFig. i96 (
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e !
¥

Ninety=$ix

In fig. 197, extend FG -

to G, draw EB, and threugh C o o

draw HN, and dfaw DL par. to AB,
"8q. AK = 2[quad. .ACNM

= (tri. CGN = tri. DBL) + tri.

AGM common. to sq. AK. and AF

+ (tri, ACG = tri. ABH = tri. AMH

+ tri. ELD)] = 2 trl. AGH + 2

tri. BDE = sq. HD + sq. HG. B
. 8q. upon AB = sq. upon

C ’(:L ! BH + sq. upon AH, .. h? = a2+ b2,
sesT T . " a. SeeAm Math. Mo., V.
Fig.'197 Iv, 1897, p 268 proof LXIII
Ninety-Seven - *

In fig. 198, extend FG
to C, draw HL par. to AC, and
draw AD and HK. Sq. AK = rect.
BL + rect. AL = (2 tri, KBH = 2
tri. ABD + paral ACMH) sq. BE
+ 8q.: AF. '
.~ 8q. upon AB = sq."upon B

I\ : ‘V}')F . BH +-sq.. upon AH, h? = a2+ p?
AN /ﬁ\. ' < a. See Jury Wippe}- 1880,
Y- Y p. 11, II; Am. Math. Mo., V. IV,
cv — e 2K ~ - 1897, p. 267, proof LVIIT; Four- |~
, rey, P.. .70,*fig. b; Dr. Leitz-
Fig. 198 - ' mann's work (1920 ), p. 30, fig.
) - 31,
Ninety :Ei.smt » . - .

In fig. 199, through G draw MN par. to AB,
draw HL perp.. to CK, and draw AD, HK and BG.
> — Sq. AK = rect. MK + rect. AN = (rect. BL = 2
-\ tri, KBH = 2 tri. ABD) + 2 tri. AGB = sq. BE + sq. AF.

-
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. sq. upon AB sq. upon ‘ |

. /
! ‘ ; I@ ’ BH + sq. upon AH.:
T - : a. See Am. Math. Mo., V.
! ‘ Iv, 1897, p. 268, proof LXI. .

Minety-Nine
In fig. 200, extend FG

to C, draw HL par. to BK and
= quad.

" draw EF end IK. 3q. AK
AGMB common to sq's"AK and AF
+ (tri. ACG = tri. ABH) + (tri.

CKL = trap. EHBN + tri. BMF)
+ (tri. KML = tri. END) sq. HD

+~sq. HG. .
S 8Q. upon AB = 8q. upon
. h? = a%+ b2, .

BH + sq..upon AH.
8. See Am. Math; Mo., V.
Iv, 1897, p. 268, proof LXIV.

-

»:

.Qne_Hundred

_In"fig. 201, draw FL per.

to AB, ‘éxtend FG to. c, and draw’
= (rect. LK

—

2 tri.

3q. AK
2 tri ABE =

EB and FK.
= 2 trl. CKF =
ABH + tri. HBE = tri. ABH + tri.
FMG + sq. HD) + (rect AN = parsl.
MB).
S 8q. upon AB sq. upon
BH + sq. upon AH. » h? = a®+ b2,
. a, See Am. Math. Mo., V. \ ,
Iv, 1897,.p. 269, proof LXVII-

’

/ B . Fig. 201
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Qn:-ﬂunﬂ

In fig. 202, extend FG
to C, HB 'to L, draw KL par:; to
AH, and take NO = BH and draw OP
and NK par. to -BH.

3q. AK = quad. AGMB com-
mon ‘to sq's AK and AF + (trl. ACG
tri. ABH) + (tri. CPO = tri.BMF)
+ (trap. PKNO + tri, KMN = sq. NL °
sq. HD) = sq. HD + sq. AF,

. 8q. upon AB = sq. upon

BH + sq. upon AH. . h% = aZ+ b2,

a. See Edwards' Geomn.,
1895, p. 157, fig. (1%)..

—
=

e_Hundred Two

Qne_
In fig. 203, extend HB to

L meking FL = BH, draw HM perp.

to CK and draw HC and HK,

‘ Sq. AK = rect. BM + rect.
AM = 2 tri. KBH + 2 tri. HAC = sq.-
HD + sq. HG '
-."sq¥ upon AB = sq. upnn o
Y, h% = a2+ b?

a. See Edwards' Geoma,
1895, p. 161, fig. (37).

Qne_Hyndred

!
}

Draw HM, 1B and EF par.
Join "CG, MB and FD.
Sq. -AK = paral. ACNL
= paral. HN + paral. HC = (2 tri.
BHM = 2 trl. DEF = sq. HD) + sq.
HG = sq. HD + sq. HG. '
. 8Q. upon A.'B = sq. upon
BH + sq. upon AH. .. h% = a2+ b2,
‘a,. See Am, Math Mo., V.

to BK.

Ly, 1897, . 269, proof IXIX.
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Fgur y >

. In fig. 205, extend FG
to C, draw. KN par. to BH, take
NM = BH, draw ML par. to HB, and
draw MK, KF and BE. ;
' Sq. AK ¥ quad. AGOB com- —
"mon to sq's AK and AF + (tri. ACG ’
- = tri, ABH) + (tri CIM = tri,
\ N~ I *BOF) + [(tri. LKM = tri, OKF)
% A I + trd. KON = tri. BEH] + (tri.
M- N - MKN.= tri. EBD) = (tri. BEH+ tri. )
OIS = = 3K .EBD) + (quad. AGOB + tri. BOF
P + trd. ABC) = sq. HD + sq. HG.
Fig. 205 % 8¢. upon AB = sq. upon
) BH + sq.. upon AH. . h% = g2+ b2,
' - a. See Math. Mo., V. v, 1897, p.: 269, p.c'oof
IXVIII, y

In fig. 206, extend Fa
‘ to H, draw HL par. to AC, KL par.‘v
v to HB and draw KG, 1B, D and

% ‘EF.. .
S8q. AK = quad. AGLB com- *
mon to sq's AK and AF + (tri. ACG
= tri. ABH) + (tri. CKG = tri.
EFD % sq. HD) + (tri. GKL
= tri: BLF) + (tri. BLK = gparal. )

C: 6 “' K HK=lsq.HD)-(§sq.HD+ sq.
- e —-—- . HD) + (quad. AGLB + tri. ABH -
Fig. 206 + tri, BLF) = sq. HD -+ sq. AF.
' " 84, upon AB.= sq. upon T
BH+ 8. upon AH, . h® = a2 4 p2

a. See Am. Math. Mo., V. IV 1897, p. 268,
proof Xv,

B 4 s
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f

In fig 207, extend FG™
to C and N, making FN = BD, KB
to 0, (K being the vertex opp. A
in the sq. CB)'draw FD, FE and
FB, and draw HL par. to AC,

P

Sq..AK = paral. ACMO :
| i A0 = paral, HM + paral. HC = [ (pdral. | ’
| i, EHLF = rect. EF) - (paral. EOMF

v,V 'K = 2 trl, EBF = 2 tri, DBF =,rect. |
CL JEU S R .
3 i DF) = sq. HD]'= sq. HD + sq;\AF.

{

Fig. 207 ) _ ~ sq. upon AB =-sq. upon . .
," ' " BH + sq. upon AH. . h2 . a2+ p? !
- 8. See Am Math. Mo., V. IV, 1897, p. 268,

proof LXVI ‘ . -

#

| " In fig. 208, .
through ¢ and K draw NP - |

and PM par. respectively

. to BH and AH, and, extend

EDtoM HFtoL, AG ‘to

~Q, HA to'N. a.nd FG o C.
° 8q.: AK + rect. HM
+ 4 tri. ABH = rect. NM .
= sq. HD-+ sq. HG + (rect.
prect. HM) + (rect. -
= 2 trl, ABH)+ (rect. |
= 2 tri. ABH).
- ~ 8q. AK = sq. HD
. IR o . - '/ +'sq, HG. .~'h% = a2+, b2, |
. ¢ . . .. N . Q E D. o , .
S S sq. upon: AB sq. upon BH + sq.* upon AH;

3 w wh®=a% b2

ol - . - ‘s, Credited by Joh Hoffmann, 1n "Der Pytha- - \
' goraische Lehrsauz," 1821 to Henry Boad of London; . .

\ : see Jury Wipper, 1880, p. 19, ‘fig: . - - .

. . 1
f i

S
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~ One Hundred Eight
By dissection. Draw HL
par. to AB, CF par, to AH and XO
par. to BH. Number parts as in
figure. S
Whengce: sq. AK = parts
(@ +2)= (1 +2) in sq. HD)]

sl / e
RN tparts [3+4+5)=-(3+4+5
g A in sq. HG)] = sq: HD + sq. HG.

N ) 2 "
.fﬂ’c' \ 1 -+ 8q. -upon AB = . sq. upon
: ‘HD + sq. uponHA s h —a+b
C N ....xK Q.E.D.
Fig. 209 a. Devised by the author

o show a proof of Type C figure,

\by dissection, Dec. 1933, _ ' S ,

D

This type 1ncludes all proofs derived from
the figure in which the square constructed upon phe
shorter leg overlaps'the given triangle end the
square Upon the hypotenuse. . .

-

In fig 210, extend ED
to K, draw HL perp. to CK ang .
draw HK. ;
Sq. AK = rect BL+rect
(2'tri: BHK = /8¢, HD)'
+ (sq HE by Euclid's proof).,

Rl
: N SERE .. sq. upon AB-= 5Q, upon
1 P N M BH + sq,/ upon AH.. s.h% = a?4 b2
e .l\%\' : a. See Jury Wipper, 1880,
S CL - __ 2K p. 11, fig. 3; Versluys, p. 12,
A fig 4 !given by Hoffmann.
- Fig. 210 i l .
’J .

.
»
" M o Wit s 5o ol e s < N e e e % ra o a o

—
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‘ In fig., 211, extend ED° ‘ A
to K, draw CL par. to AH, EM par. 1
to AB and draw FE.

Sq. AK = (quad. ACLN 1
; = quad. EFGM)_+~ (tri. CKL = tri, .
. : . ABH = trap. BHEN + tri, EMA) L

. -+ (tri. KBD = tri., FEH) + tri.
BND common to sq's AK and HD
= s8q. HD + sq. AF.
"~ 8q. upon AB = sq. upon
, BH + sq. upon AH. . h® = a?+ b3,
. a. -See Edwards' Geomn.,
C“'““‘K 1895, p. 155, fig. (2).

. e Fig. 211 ,,

i . -

e : ]

In fig. 212, ex-
tend FB and FG to L and M
making BL = AH and oM T
' = BH, complete the rectan- .
~gle FO- and-extend HA to N, :
and ED-to K. ,
o Sq. AKX + rect. ‘MH
+.4 tri ABH = rect. FO
sq. HD + sq. HG + (rect.
= rect. MH) + (rect. MA
-2 2:tri.; ABH) + (rect. DL .
o = 2 tri, ABH); collecting ~
. ) - - ,_1( we have sq. AK = sq.'HD .
L \)9/' . + Fq' HG ' . . '
U, @ - , . 8q., upon AB = 8q.
T S Fig. 212, 'upon BH + sq. .upon AH,
- ‘ L o 2=a.2+'b2 @
<L e . a.' Credited to Henry Boad by Joh. Hoffmann,
IR - 1821‘ see. Jury Wipper, 1880, p. 20, fig. 14,

\ c’.
u a il

1
Q-

3
fod
N
L

e d

<

.

4

M P T e h D
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. . N 1
One_Hundred Twelve 3
. , ' © . In fig. 213, extend ED \
: to K, draw HL par. toxAC, and \ ;
draw CM. ‘
. 3q. AK = rect. BL + rect, ' K
AL = paral. HK + paral. HC sq. . |
. HD + sq. HG. o ' "
» s 8¢. upon AB = sq. upon
' o BH + sq. upon AH. o h® = a%+ b3 L
\ M 3 S a. Devised by the author, |
;* | /:\— !  Aug. 1, 1900,
I’ N ! [
Ozl bl XK ‘
o Fig. 213 _
- -
Qne_ﬂugzed_-mlusea T ; :
S , : .
- - In fig. 214, extend ED |
- AF - to K and Q, draw CL perp. to EK, ;
- a‘,’ N " extend GA to M, také MN = BH, :
éb’; ¢ : . fdraw NO par. to AH, and draw. FE." =~ ;
AR N Sq. AK = {(tri. CKL = tri, TR
N \ . . FEH) + (tri. KBD tri. EFQ) - '
o * ' 8. '+ (trap. AMLP + tri. AON = rect,
i ., ! GE) + tri. BPD common to sq's AK
4 \fD’ "V and BE + (trap. CMNO = trap.
:*‘§\;,‘.,BHEP)=sq HD + sq. HG. : ~
w\‘c;/W\1 : ~ 8q, wmAB-m.wm. . e
3 ' ‘ : C":-’:-- s 'K BH + sq. upon AH. - .~ h® = a2+ b2,
. - L =~ : a. Original wifh the !
S | -—TFig. 21k  author; Aug.fl 1900, ¢ - :
a an.!uns! Fourteen -
r DR - o Emplby”fig. 214 nﬁﬁBéri the parts as thgre ,
' - numbered then, -at once: sq,/xﬁ¥§~§um of 6 parts ' .

F - [(1+2=sq.}lD)+(3+4+5+6=sq.HG) 8q.
. /b i ) ‘ H + 8q, HG] :f’ P

L
¥,
et
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- <. 8q. upon AB = sq..upon HB + sq. upon HA,
s~ h® = a® + b2, Q.E.D. . ‘
" a. Formulated by the author, Dec. 19, 193%3.,

-——-—-—-———-——m--—-—

. : . ’ In fig. 215* extend HA

A to O making OA = ED to K, and |
¢ L AR . Jjoin 0C, extend BD to P and join
<’ “ . EP. Number parts 1 to 11 as in
\ H figure. Now: sq. AK = parts 1
' 1\\ ’ +2+ 3+ 4 + 5 'trapezoid EPCK
- 4,\3/3 =%;—Pﬁ PD = KD x PD = AH x
@5 Q’.;I'l/_ 'z:'AG=sq.HG=prts7+4+1O
‘ Ne | +11 + 1 'Sq. HD = parts 3 + 6. -
K : /\“;}’ AN 5 8q. AK =1 + 2 +.3 + &
“______\4 +5=1+(2=6+7+8)+3+4‘_.
f +5=1+(6+3)+7_+‘8+,4+5”
Fig.’215 =1+ (6+3)+ (7T +8%L11)+4
/ * +5=1+(6+3)+11+%+5
] ’=1+(6+3)+11+4+(5=2-4,s’ince5+'4'+3».
. | \=2+3) 1+(6+3)+11+4'+2,4=1+(6+,;)‘
.- - : +11+ 4+ (2=T7+4+20)-4=1+(6+3)+ 11
‘ ; +4+7+10= (7+4+1o+11+1)+(6+=3)=sq.
-/ HG + sq. HD. ‘ - \
) ‘ . s 8q. uponsAB‘= sq. upon HB +“sq. upon HA. '
1/ an®-e®sv2 QED. .
ot v T - " &, This figure and proof formulated by Joseph - >

. Zelson, see proof Sixty-Nine, a, fig, 169. It came
- o to me on.May 5, 1939. ’ =
o 7 , b. In thbs proof, as in all proofs receifed
. _ I omitted the column of "reasons" for steps of the
! ~ -demonstratién, and reduced ‘the argumentation from
"~ many (in Zelson's proof over ,thirty) steps to a com-
, pact sequente of essentials,’ thus. leaving, in all Tl
SR ‘ o cases, the reader to regast the. e°sentials in Ehe -
. . ,form/gs given in- our accepted modern texts. ‘
' ’ By so doing a savipg of as much as 60% of
. ] page space results--also hours of time for thinker
~ _ - and’ printer o :

P

o, . )gyr.
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- - -—\'____‘ ,

AR - Qne_Hundred Sixteen

+

e . In fig. 216, through D A, |
. ,’“f ¥ draw LN par. to AB, extend ED to ; d
6~ \ " K, and draw HL and CQR. L AR
4 : -] 8q. AH = (rect. AN » . . g
= paral. AD = 5q. DH) + (rect. MK % ' ’
w =2 tri. DCK ='sq. GH).
, . &% 8Q. upon AB sq. upon
- | BH + sq. upon AH. . h® = a%+DbZ.
"n:’-_';‘ - N a. Contrived by-the |
A /{,,~\ j auth9r, August 1, 1900. - f
V4,7 N\ b. As in types A, B and o
cCv. .- - MK C, many other proofs may be de- T
\ rived from the D type of figure.- -
. Fig. 216 - - e
: . . ) ? i S b
f , E e L

This type‘inclﬁdésx§11 ﬁroofS’derived’from
the figure in which the. squa{es constructed upon the
hypotenuse and the longer leg=overlap the’ given tri-
angle ‘ .-

0,"

N | ! Qng-ﬁunécai §:vsaie:n o '

N v PR

. - ~ - o y

‘ In‘fig 21% ‘through H ~ . o
drav IM par. to KB, and draw GB, . - b
HK and HC. ) ’

"8q. AK = rect. LB +‘réct.
'=_(2 tri. HBK .~ sq. HD) +.(2
\tri CAH = .2 tri. BAG = 5q. AF). , -
& 8q. “upon AB = '89. upon““' '
—BH + sq. tpon AH. ~.h% = a®4p®, \
;.a. See Jury‘Wipper, 1880,
.14, VI Edwards'._Geom.,. 1895,
p '162, fig. (38); Am. Msth. Mo.,
V. W, 1898, p..T4, proef LXXV;
Versluys, p. 14, fig. 9; oneof
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Hof'fmann s collection, 1818 Fourrey, p. 71, fig. &;
Math Mo., 1859, Vol. II, No. 3, Dem. 13, f'ig, 5.

Qu:-ﬂauéted Elahteen

— s m cte me S W o o e

In fig. 218, extend DE

spectively to AB and BH.

‘ ' 8q. AK = (rect. LB
= paral. AD = sq. BE) + (rect.
1K = paral. €D = trap. CMEK

= trap. AGFB) ¥ (tri KDN = tri.
CLM)-sq. BE +'sq.i AF. '

"~ sq. upon AB = sq. upon
BH+sq. uponAH o h a2
+ b2, ! ,

- " a.~See Am. Math. M,o.,

V. V, 1898, p. T4, LXXIX.

Fig. 218

1
¥

. Qne-ﬂuuégsi-ulngtega

t

v e T e
o o

In fig. 219, ektehd,KB

F g - .to P§ draw CN par. to HB, take N
d_ e -o-K NM = HB, and draw ML par. to AH.
- K ! E . 8q. AK = (quad. NOKC °
L’r’(‘a -d/\ = quad. GPBA) + (tri -CLM = tri.
o N Hey o BPF) +- (trap. ANML = trap. BDEO)
! ' % + tri. ABH common to sq's AK and
Al S ‘AF + tri, BOH common to_sq's AK,
SN N ‘and HD = sq.HD+sq.AF
. :5"1" —em— - % 8q.,upon AB = sq. upon
- é\ P BH + 8Q. uponAH o \h )
7 + b2, v : '
REE 219 ‘. 8. Am Math. .Mo., Vol. v,

1898, ‘p. T4; proof LXXVII;

)

€, L .{‘ o A 2
N " P S

to K and draw DL and CM par. re- -
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<

. ﬁ' ‘ Fig. 051
+ (bect. AB + rect.

_BO) - 4 tri. ABH] =
+.2

e One Hundred Twenty

In fig. 220, extend DE
to X, GA to L, draw CL par. to
AH, and draw LD and HG. - ;

Sq. AK = 2[trap. ABNM
= tri.- AOH common to sq's AK
and AF + (tri. AHM = tri. AGO)
+ tri. HBN common to sq's AK
.« and HD + (tri. BHO = tri. BDN)]
= s8q. HD + sQ. AF. - ‘

, -, sq. upon AB = sq.
upon BH + sq. upon AH., |

a. See Am,-Math. Mo.,
“Vol. V; 1898, p. T4, proof

LXXVI.

Extend GF and EDto’
0, anc complete the rect. MO;
and extend DB to ‘N. .
' 8q. AK = rect. MO

- (4% tri. ABH + rect. NO)
= §(rect.‘AL + rect. AO)

4 tri. AHB + rect. NO)}
= 2(rect. A0 = rect. AD
+ rect; NO) = (2 rect. AD.
.4+ 2 rect. NO - rect. NO
- b4 tril ABH) - (2 rect. AD "
.+ pect. NO - 4 tri. ABH)
= (2 rect. AB +.2 rect. HD

. - + pect. NF + rect. BO - 4

T . “tri. ABH) = [rect. AB,

NF) + rect. HD + (rect. HD + rect.
2 tri, ABH + sq. HG + sq: HD

tri ABH - 4 tri. ABH) = sq. HD + sq. HG.

AB = sq. upon BH + sq. upoh AH.

\\ K 1

o e o

PRI Ca ol aa e el
" ri L, A At p T oAk Rl P A v £




172 . THE PYTHAGOREAN _P-ROPOSITION
a. Thls formula and conversion is that of the —1
author, Dec. 22, 1933, But the figure is as given ln
~Am. Math. Mos; Vol. ¥, 1898, P.. T4, where see another
‘ 'somewha.t-\(difi:erenp/ proof, No. LXXVIII. But same fig-
ure furnishes: oo
| One_Hundred Twenty=Tuo
j' . In‘fig...éal{ Pexte‘gd‘ GF and ED to- 0 and com- -
P .. —Plete.the.rect. MO;~ Extend DB to N, ~ - o
yo S . 8q. AK = rect. NO + 4 tri, ABH = rect. MQ
¥ ~ = 8q. HD + sq. AF + rect. BO + [rect. AL = (rect. HN
: ' - =2 tri, ABH) + (sq. HG = 2 tri. ABH: + rect., NF)],
5 . which coll'd gives sg. AK = sq. HD + sq. HG.
o L ) | » 8q. upon AB = sq. upon BH + sq. upon AH.
i T . ~h® =5 g2 + b2, i . s \ ‘ .
| ‘ v L &. Credited to Henry Boad by Joh., Hoffmann,
R ‘ in "Der ?ythggoraische'l;ehrsatz'," 1821; see Jury Wip-
| ) -~ . per, 1880, p. 21, fig, 15. ‘ -
YA \ : ‘ ' Qné’.tlmdud-.luga;lehzgz"‘ “ L

T | . ‘ “ . - In fig. 222, drsv CL and -

SN - ' KL par. respectively’ to AH land
BH,..and .draw. through H;IP,
| ) Sq. AK = hexagon_ AHBKLC
K , = paral. 1B + paral, LA = sq. HD
":‘ ) ’ ‘i\————'—'ﬂ"’ 8q. AF- 0“ ‘_‘ .; :
B D + . 8q. upon AB = sg, upon. (
; « _BH +'sq. upon AH, .~ h% = a2+Db2

_j \ - : > NF ‘&, Devised by the author, .

i t KN ,) - ~March 12, 1926,- : .

i’ '."'. | N\ ,/ - ' SN g c.‘
E j . < LMY pgooee o ) o :

' l\ ) "r: v © t
Ef . | Qne Hyndred Twenty-Four |
1 - -

Rect. 1M = [sq. AK = (parts 2 common to sq.
AK and sq. HD + 3 + 4 + 5 common to 8q. AK and sq. HG)
o s . y :
E N ooy B B N — - o .
L IV -
i
|
| -
a | M ]
\ 1 i . .
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+ parts 6 + {7 + 8
+ 9 4+ 14+ 10 + 11
HG + parts {(6

H2} # parts (9 + 10 + 1l =

ABN + trl] XPE] =

= 8. HG)'\
= [3q. AK = sq.
2) + 1 = sq.
Etvi
[(sq. 2K =

HD + s8g. EG) + (2 tri. ABH
tri. KPE}], or rect. IM - (2 -

tri ABY + tri, KPE) =

'asq.}m%-sq,m]

[qq. AKX

*

; ¥ o . & dq. AKwsq,J{B-f-sq.
Yoo I : HA. & sg. upon AB = sq., upon
" s he'= aa

D + sq. uvpon HA,

+ b,

.Q.E.D.

A M b, AR BT A Ak <
e >

‘ ' &, Original with the- suthor; June 17, 1939
E . b, See Am. Math. Mo., Vol. V, 1898, p. T4,
) ’ " proof LXXVIIE for ano*her p’r’ofaf, wnich is: (as per
S "essentials)s

S e e e s

j . SR - . 7T o -In f1lg, 223, extend CA, HB, DE and CK to M,

\ w1 N, K and L respectiyvely, and draw MN;. LN and CO re-
o spectively psr. to AB, KB and HB. -

o Sq. AK + 2 thi, AGM + 3 tri. GNF + trap. AGEB'

+

] = rect. ON ='sq, HD.-+ sq. HG + 2 tri. AGM + 3 tri,
: ~ GNF + trap. COEX, which ccll‘d gives sq. AK = sq. HD
s e b+ 8qe HG e ) ‘ }
.. N v ' . sq. upon AB = sq.- upogk ' S
. Y o Bﬂ + sq. upon AH. .. h® = a”‘-! 27 *
LY SRR ) IE (L -
P2 _vy . B i . ,' !/,“E .- . N ,':, . N
A - K '-Qﬁﬁ-ﬁiﬂdﬁii-lﬁﬁﬂilziil \
. ) S In fig. 224, extend KB \
T . - rmd CA respectively to 0 and N, .
) 1 . through H 'draw LM par. to KB, and =~
3 / ; draw GN and -MO respectively par.-
f. - [ : i’ . to AH amd BH. :
[N ) p/ i J . ., -
T, , . /N' ’G"~\}0 - o Sq.AK=rect I.B+rect
” . g ' 3 ’ © ) LA = paral BHMO + paral. HANM ‘f
' " Fig. 224 \“=wam+quF - B
- . 0 [° . P '
o ~t - §° ) "/ b .. . | ,\
. - ’
o ‘ 1 v o o ’ . ——
. ¢ . N 1 .,
n . e ° .
'?. °
‘ f. ) ’ ;, ' ° A i .
. i
* v &£ v
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. a .\; . 8q. upon AB - sq,. upon BH + sq. upon AH, :
T . : : . ~h® = 2?4 p? - ! - v
" . R - Original with the guthor, August l 1900.
; A - ‘ b sMany -other proofs are derivsble from this
: o ". 7 type of figure. : ‘
% ' ' e, An algebvaic proof 1s easily ob+ained from
- " . fig 224, “ )
e o This type includes all pvoof_‘s derived from ]
-3 . Ehs figure in which the .squares constructed ‘upon the
. ‘ o hypofenuae and the shcrter leg -overlap the given trl--
: angle. N R
i ¥ One K saaﬁr.gi-lﬂmzx:.s.mn-
: , : { . .
. — P - Ig“ - ’ © - In the f‘ig. 225, dray KM
X e ? e ‘ par, to AH, ~
. N 8q. AK = (.tri; BEM = tri,
‘o "ACG) + (tri. EIM = tri. BND) :
i \ a . + quad. AHLC common to sq's AK = ¢+ !
- . A and AK + (tril, AWE = tri. OLF), ‘
g e SRR + trap. NBHE common to sg's AKX
- ; . and EB = sq.. HD + sq. HG., . b
: : ' Fig. 225- : _ . 8q¢. upon AB = sq. upon L «
L : N "BH + s8q. uanAH ~ h% = &% + v S
J . e R ', a. The Journal of Education, V. XXVIII, 1888,
® , , . , p. 17, 24th proof, eredits thls propf to J. M. Mc- PR
N : * T Cready, of Black Hawic, Wis.; see Edwards' Gecml., ' L
. 3. ) 4 1885, p. 89, art, 73; Heath's Math. Monogrephs, No..2, |
R . 1900, p..32, proof XIX; Scientific Review, Feb. 16, -
' 1859, p.- 31, fig~~-jo-~~n A Bell J‘uly 1, 193“8 one : 4
_ of hi$ 40 proofs. " DR B "
R . b. By nusibering the dissected parts, an obvi~ ‘ |
g m-ﬂ&»pmef!_is seen., .
| R ’ T~ ' » :
[} \;“ " ‘ ) \\\ ) o . *
N a6 - N o - !
i . 7 ' ]
3 - - : i v ¥ £ f{‘l
. ’ ) 3
NG L , . T N . :
* / :
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One Hundred Twenty=-Eight i~
F - In fig., 226,. extend AH
/C;:\\:.- 4=—K  to N making HN = HE, through H
G- '), ! 7M4N drav LM par. to BK, ahd draw BN,
<0\ EK and HC.

N l | “' 8q. AK = rect. IB +rect.
| Ly LA = (2 tri. HBK = 2 tri. HBN
A = sq. HD) + (2 tri, CAH = 2 tri.

\ L7 AHC = sq. HG) = sq, HD + sq. HG.
D . 8q. upon AB = sq. upon -
Fig. 226 BH = sq. upon AH.: .~ h® = a%
+ b=,

a. Original with the author, August 1, 1900.

b. An algebraic proof may be resolved from
this figure. )

c. Other geometric Proofs are easily derived
from this form of figure. '

B

~ .

One Hundred Twenty-Nine

In fig. 227, draw IH
perp. te AB and extend it to

K IL ,K nieep ED produced and draw MB, HK
G// | \\\ R and HC.
X | \\"H | Sq. AK = rect. IB +rect.
N y LA = (paral. HMBK = 2 tri. MBH'
\ | E"B = 8q. BE) + (2 tri. CAH = 2 tri.
A < ” AHC = sq. AF) = sq.. BE + sq. AF.
‘:D./"// T . 8q.,upon AB = sq.. upon
“;"M "BH + sq. upon AH. °.. h® = a2
2 + b=, :
Fig. 227 (a. .See Jury Wipper,

1880, pl. 1%, fig. T7; Versluys,
p. 14, fig, 10;.Fourrey, p. 1, fig. f. _

-
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V. V, 1898, p. 73, proof 1XX;‘A. R. Bell, Feb. 24,
1938. SN ’
b. In Sci. Am. Sup., V.'70, p. 359, Dec. 3,
1910, 1is a proof by A. R. Colburn,.by use of above
figure, but the argument is not “that given above,

—— e W > - . — —— > > > S e e e

2

H In fig. 230, extend FG to C
‘ and ED to K. ] .
A B Sq. AK =.(tri. ACG = tri.
9 71\, ABH of sq. HG) + (tri. CKL = trap. .
M\~ MFF. NBHE + tri. BMF) + (tri. KBD = tri.
i \ 3L, BDN of sq. HD + trap. LMBD common
| )b*‘\ | to sq's AK and HG) + pentagon AGLDB
“Cl” \"/'( common to6 sq's AK and HG) = sq. HD
e + sq. HG. e
Fig. 230 ) ] .. sq. upon AB = sq. upon BH
+ sqg. upon AH. ~-h% ="a% + b3,

_ a. See Edwards' Geom., 1895, p. 159, fig.

(24); Sci. Am. Sup., V.. 70, p. 382, Dec. 10, 1910,

for & proof by A. R. Colburn on.same form of figure.

—— > > s e s G e T s S s o> i e et s e e
¥

Qne Hundred Thirty-Three

The construction is obvious.
Also that m + n = o + p; also that
tri.- ABH -and tri. ACG are congruent.

Then sq. AK = 4o + 4p + g=2(o + p)
+2(0 +p)+q=2(m+n) +2(c+ p)

+'g=2m+o0)+ (m+2n + o + 2p

]
+ q) = sq: HD + sq. HA.

j .. 8q. upon AB =, sq. upon HD
+ sq. upon HA. ~ h% £ a2 + b2,

Q.E.D,

49, where credited to R. Joan,
Nepomucen Reichenberger, Philosophia et Mathesis
Universa, Regensburg, 17q4. ' .
* b. By using congruent tri's and trap's the
algebraic appearance will vanish.

<

g

a. See Versluys, p. 48, fig.
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Having the construction,
_and the parts symbolized, it is evi-
dent that: sq. AK = 30 + p + r + 8

'\\\ /\,”'r = 3o0+p)+ (0o+p=2s8)+r
' \d'/‘/o: -=2(o+p)+20+r={n+o0)+ (m
. :s N +2n+ o0+ r)=sq. HD + sq. HG.
7 . . v = I'ID
L 7 s \ S84, upon AB sq. upog
[ Crl 2\ MK + sq. upon HA. .. h2 = a? + b2,
IPT . Fig. 232 - a. See Versluys, p. 48, fig
: 50; Fourrey, p. 86.

’!‘ b. By expressing the dimensions of m, n, o,
! P, r and s!in terms of a, b, and h an algebraic proof
results A . . -

- i
i N »

Py -

Complete the three sq's AK,
HG and HD, draw CG, XN, and”HL
through G. Then -

{

N ‘ Sq. AK = 2[{rap. TACIM = tri.
IR A F GMA common to sq's AK?””H AF + (tri.
, , \77 », ¥ ACG = tri. AMH of sq. AF + tri. HMB
' }3 NI of sq. HD) + (tri. CLG = tri. BMD
! d N of sq. HD)] = sq. HD + sq. H&. . h%
C__..lLL.-.JK - 2 .2 P
- = a® + »v=, , '
Fig. 233 . . 8q. upon AB'= sq. upon BH
+ s8q..upon AH
&. See Am. Math. Mo., V. V 1898 p. 73,
proof LXXII.
E Qas_ﬂungzgi-Ihin -8ix
. ( Draw CL and LK par. respectively to HB and

HA, and draw HL. )
ST Sq. AK = hexagon ACLKBH - 2°tri, ABH = 2 quad.
ACLH - 2 tri., ABH = 2 tri. ACG + (2 tri. CLG = sq. HD)

Va . -
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+ (2 tri. AGH = sq. HG) - 2 tri. ABH
= 8q. HD + sq. EG + (2 tri. ACG = 2
tri. ABH - 2 tri. ABH = sq. HD - 8q.

- -
‘e -+ 8q. upon AB = sq. upon HD
q. upon HA, . h®% = g2 + b2.

) a. Original by author Oct.
Clel 4 _ K 25, 1933, -
] ,

-
Y
' -4 <
; \V
Fig. 234 - -
- " One_Hundred Thirty-Seven
In fig. 235, extend FG to C,
. ED to X and draw HL par. to BK.
: ' Sq. AK = rect. BL + rect. AL -
A ! 19 = (pgral. MKBH = sq. ‘HD) + (paral.
i ;\—*i’;,)r1) CMHA = sq. HG) = sq. HD + sq. HG.
- “\ v" AF ©. 8q._upon AB = sq. upon BH
| \j%, i + 8q. upon AH. .. h® = a2 + p2,
, %N QED. |
¢ CK/ h \\J}( a. Journal of Education, V.
777 7T XXVII, 1888, p. 327, fifteenth proof
Fig. 235 by M. Dickinson”~winqhester, N.H.;

- Edwards' Geom., 1895, p. 158, rig.
x “(22); ‘Am. Math. Mo., V. vV, 1898, p. 73, proof LXXI;
— "~ Heath's Math. Monographs, No. 2, p. 28, proof XIV;

Versluys, p. 13, fig. 8--also p. 20, fig. 17, for

same figure, but a somewhat different proof, - & proof
credited to Jacob Gelder, 1810; Math. Mo., 1859, Vol.
II, No. 2, Dem. 11; Fourrey, p. 70, fig. 4.

‘ ' b. An algebraic proof is easlly devised from
this figure,
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. Draw HL perp. to CK and ex-
tend ED and FG to K and C resp'ly.
Sq. AK = rect. BL + rect, AL
= (trl. MLK = quad. RDSP + tri. PSB) +
+ [tri. BDK - (tri. SDM = tri. ONR) P
= (tri. BHA - tri. REA) = quad. RBHE] b
+ [(tri. CKM-=:tri, —A.BH) + (tri. CGA
= trl, MFA) + quad. GMPA] = tri. RBD
+ quad. RBHE + tri. APH + tri. MEH
+ quad. GMPA = sq. HD + sq. HG.
‘ '~ sq. upon -AB = 3q. upon BH
A o + sq. upon AH. -. h% =-a2 + b2 Q.E.D. -
’ - a. See Versluys, p. 46, fig's 47 and 48, as : ‘
given by M. Rogot, and made known by E. Fourrey in
. his "Curiosities of Geometry," on p. 90. e

) In rig. 237, extend. AG, ED,
BD and FG to M, K, L and C respective-
ly.
Sq. AK = U4 tri, ALP + 4 quad.
N LCGE-+ sq. PQ + trl. AOE - (tri. BNE
\ 1\), 'VF = trl. ACE) = (2 tri. ALP + 3 quad.
1}( ,é | © LCGP + sq. PQ + tri. AOE = sq. HG) .
. I % (2 tri. ALP + quad. LCGP - tri. AOE
= 8q. HD) = 3q. HD + sq. HG.
Cl— "“MJK “ 8q. upon AB = 5q. upon BH’
Fig. 237 , + sq. upon AH. -~ h?® = a2 + b2,
‘ a. See Jury Wipper, 1880, p.
29, fig. 26, as given by Reichénberger, in Philoésoph-
., 1la et Mathesis Universa, etc.," Ratisbonae, 17T7k;-
Versluys, p. 48, fig. 49; Fourrey, p. 86. )
o b. Mr, Richard A. Bell, of Cleveland, O.
submitted, Feb. 28, 1938, 6 fig's and proofs of the
type G, all found between Nov. 1920 and Feb. 28, 1938.
~Some of hils figures are very simple.
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One _Hindred Fo'fx

TP T 8 D T ol e m e o B . S

In £ig. 238, extend~ED-and .

FG /tc K and C respectively, draw HL
perp.” to 0X, and draw HC_and HX,

= (paral. MKBH = 2 tri, KBH = sq. HD)
+ (paral. CMHA = 2 tri. CHA = sg. HG)
! ’\D )IM\ = s8g. HD + sq. HG. ) '
|, NV " 8q. upon AB = ?,q upon BH |

L - 2 1 2
LJ. .R + s3. upon AH. . h* = + b K
ce b Y ' a. See Jury Wipppr, 1880 {
Fig. 238 .D. 12 fig. 4. -
b* This proof is only a vari-—

.Sq. AK = rect. BL'F pect. AL

" ation of the one preceaing__‘ s -
¢. From this figure an algebralc proof is ob-
tainehle.
One_Hundred Ferty-One
_ ‘ In fig. L.39, extend FG
‘ to G, EF to L mdking FL = HB,and
drav KI, and KM respectively pér.
A \ *to AH and -BH. .
N N F Sq. £ = {[(tr1. CK
N N s P
« 27 M7\ = tri, BKL) - trl. BNF = trap. -
RN : >« OBHE] + [tri. XMN = tri. BOD)
o Q):‘M | £‘> = 8q. }H)}+ [tri. ACG = tri, ABH)
CL.. ... Nk~ + (tri, BOD- + hexagon AGNBDO)
"= sq. HG] = sqg. HD + -HG,
Fig. 239 ' 7. 8q. upon AB = sq upon
BH + £q. upon AH. . h® = 32+ p2,

a. As taken from "Philoscphia et Mathesis
Unlversa, etc.," Ratisbenae, 1774, by Relichenberger;
see Jury Wipper, 1880, p. 29, fig 27.

A~

-
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In f1g. 240, extend
HF and HA respectively to N
and L, andl complete the =aq.
| \ ] HM, end extend ED to X and BG
\ RN 1 N -
NN "5,«-'(7{“""'“‘“ to C. - . .
S 2‘; N 5 Sq. AK = sq. HM . h
N \'t, N tri. ABH = (sq. FK = sq. HD)
. a + 8q. HG #_(rect. LG =-2 trl.
- N . ABH) + (rect. OM = 2 tri, ABH)
M8 : ="sg. HD + Sq. HG + 4 tri.ABH
Fig. 240 ‘ - 4 tri., ABH = sq. HD + sq.
HG, .
/ .~ 8q. upon AK = sq. upon BH + sq. upon AH.
. s h® = a? + bE, ' " C
' a: Simllar -to Henry Boad's proof, London,
. - 1733; see Jury ¥Wipper, 1880, p. 16, fig. 9; Am. Math.
Mo., V. V, 1898, p. 74, proof LXXIV. .

’f)--.-:

One _Hundred Forty-Thrae

Ve

In fig. 241, extend FG and
ED to C and K respectively, draw
FL par. to 4B, and draw HD and FK.
‘ Sg. AK = (rect. AN = parsal.
MB) + (rect. LK = 2 trl, CKF = 2
tri. CKO + 2 tri. FOX = tri. FMG .
-+ tri. ABH + 2 trl, DBH) = 3q. HD .
-+ sq. HG. . )
* 87. upon AB = sg. upon BH
{ + sg. upon AH. .~ h® .= af +1p%,
Fig. 241 ~ Q.E.D. o '

a. See Am, Malth, Mo., Vol.
v, 1868, p. 74, prooﬁ LXXIII.
. !

ot e
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One Hundred Forty-Four

— . v wh = T s T - G e e o o 2t o Lo e

- : - |* 1In fig. 242, produce FG *o G,
' through D and G draw LM and NO par.
to AB, and draw AD and BG. E
Sq. AK = rect. NK + rect. A0
. = (rect. AM = 2.€r1; ADB ='sq. HD)
+ (2 tri., GBA = sq. HG) = sq. HD .
TN "",“ + sq. HG. - o
, = . sq. upon AB = sq. upon BH

ﬁi;: ?K + sqg. upon AH., .. h? = a2 + b2,
* -t =" ‘a, This-1s No. 15 of A. R.
Fig. 2k2 .. Colburn's 108 proofs; see his proof
~in Sci. Am. Sup., V. 70, p. 383,
Dec., 10, 1910, 7 ) -

b. An algebraic proof from this figure 1s
easlly obtalned. ‘ ‘

2 tri. BAD = hx = a2, ---(1) |

2°trl. BAG = h(h - x) = b2, ---(2) . .
(1) + ('2) = (3) h® = -a?—-_:i‘_*:bsﬁi*“" - :%'(’Fr"*SW“L"') ,

" Qne_Hundred Forty-Five LT

7

)

In fig. 243, produce

H . HF and CK to L,”ED to K, and
- AG to 0, and draw KM and ON
A / par. to AH, o
SN > F - Sq., AK = paral. AOLB |
AR 4T = [trap. AGFB + (tri. OLM - - ]
: \ \1; N = tri. ABH) = sq. HG] + {rect. ‘
! /C:\ ', A 6N = tri. CLF.- (tri. CO |
clz” 9'3:#:.' Y, = tri. KIM) - (tri. OLN ~
ST T TR T e = tri, CKP)] = sq. FK = sq.

Fig. 243 HD} = sq. HD #+ sq. HG.
. * 8. upon AB = sq.
upon BH + sq. upon AH., .. h2? = a2 4 b2, ,
a, This proof is due to Prin. Geo. M. Phil- ,

1ips, Ph.D., of the West Chester State Normal School,

Pa., 1875; see Heath's Math. Monographs, No. 2, p. 36,
proof XXV, ‘ f

'
'

|
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? and HF to M, ED to K,:and AG to |
i 0 making GO ='HB,' draw ON par.
H - * to AH, and draw GN.
_ Sq. AK = paral. ALMB
4\ \B = paral. GM + paral. .AN ?,I(tri'
{ AN “*NGO - tri] NPO = trap. RBHE)
T by ‘ﬁk,’q \ + (tri., KMN'= tri. BRD)] = sq. HD
. \ | \
S ¢+ P N.+ sq. HG. .
! ,’GE BRSO s . sq. upon AB = sq. upon
Cre” - ok M7® gy 4 AH. . h% = a®+1b2.;
: Y- D-/,](--M - 8q. upon AH. . h™ = a“+b".
- - . S - -a, Devised by the author,
-Fig. 24h © March 14, 1926.

SRR LE_NLE_8 5 DS T 4 S0 S )
/ ' N
| ! .
: 7
- v . A
{

/
. Through D draw DR par.
‘AB meeting HA at M, and/through
G draw NO par. to AB m?éting HB
at P, and draw HL perp. to AB.
Sq. AK & (rect. NK
: , rect. AR—=—paral. AMDB = sq.
: N~ - -O-"r-.ﬁ-"‘"—'}IB) + (rect. AO = paral. AGPB
r , ;K = sq. HG) = sq. HD + sq. HG. )
’ sg. upon AB = sq.
Fig. 2U5 upon HB + sq. upon HA., .. h?
} , = a? + b2,
a. See Versluys, p. 28, fig. 25. By Werner.

rd

A}

- 2t e e o o o e e L o i o e e e

Produce HA &nd HB to O and N resp'ly niaking

AG = HB and BM = HA, and complete the sq. HL.
Sq. AKX = sq. HL - (4 tri. ABH = 2 rect. 0G)

° =,[(sq.'GL = sq. HD) + sq. HG + 2 rect. 0G] - 2 rect.
0G = sq. HD + sq. HG. .. sq. upon AB:= sq. upon BH ’
+‘sq. upon AH. .~ h% = a® + p%, :

S
1
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) -a.” See Versluys, p.
52, fig. 5%, as found in Hoff- -
mann's 1list.and in "Des Pytha-
goralsche Lehrsatz," 1821.

EEF R LR P~ SR SRS L W AL

i

]
-
|-
‘- {

| . One_Hundred Forty-Nine

1

|

|

\E::_ RN _J,K' _ Produce~CK and HB to
\

T
| C y L, AG to M, ED to XK, FG to C,
‘ ‘\l..,-'M and draw MN and KO par. to AH.
o7 . 7'8q. AX = paral. AMLB
V Fig. 246 = quad. AGFB + rect. GN + (tri
- MLN = tri. ABH) = sq. GH. - .-
‘ H , + (rect. GN = sq. PO = sq. HD)
’ '::BW' : ‘= sqg. HG + 8. HD, . -sq. upon
2’ 2 . . AB = sq. upon HB # sq: upon <
:T‘\\\:P,f/L>E .. HA. . h% = a® T’be. 3
NG RN ~ &. By.Dr, Geo. M. -
ooy >P\ 1 "> . _ Phillips, of West Chester, Pa.,
.C';.'.,..{- Ek,\i‘il’Sl'_ :L\k, 22‘1875; Versluy}s, p.' 5’8., fig.-

a This type includes aill proofs deVised from
the flgure in which the squares constructed upon the
hypotenuse and the two legs overlap the given tri-
angle. " ’ )

Draw through H, LN perp. to
AB, and draw HK, HC, NB and NA.,
'© " 8g. AK = rect. LB + rect.
LA = paral KN + paral, CN = 2 tri.
KB + 2 tri. NHA = sq. HD + sq. HG. -
. ", 8q. upon AB = sq. upon HD
+'sq. upon HA. . h% = a% + b2, Q.E.D.
a. See Math, Mo., 1859, Vol.
II, No. 2, Dem. 15, fig. 7.

(e




TR

THE PYTHAGOREAN PROPOSITION

One Hundred Fifty-pne

Through H draw LM perp. to

AB. Extend FH to O making BO = HF

draw KO, CH, HN and BG.
3q. AK = rect. LB + rect,
(2 tri. KHB = 2 tri. BHA = sq.
HD) + (2 tri. CAH = 2 tri, AGB = sq.
AF) = sq. HD + sq. AF,
: “ 8q. upon AB = s8q. upon BH
+ 8q. upon AH. .. h® = g2 + b2,

a. Original with the author.
Afterwards the first part of it was
discovered to be the same as the
solution in Am. Math., Mo., V. V,

= 1898, p. 78, proof LXXXI; also see Fourrey, p. 71,
fig. h, in his "Curiosities "

proof.

b. This figure gives readily an algebraic

6’

Fig. 250

www,f‘ig 250, extend ED to O
draw*AO” 0B, HK and HC, wad draw,
through H, LO perp.. to ‘AB, and draw

CM perp. to AH.

S5q. AK = rect, LB + rect., IA
(paral. HOBK = 2 tri. OBH = sq.

HD) + (paral. CAOH = 2 tri. OHA
= -8q. HG) = sq. HD + sq. HG..

.-~ 8q. upon AB = sq. upon BH
+ sq. Upom AH., .. h% = a2 + b=,
QED. . .
/ a. See Olney s Geom., 1872,
Part III, p. 251, 6th method; Jour-
nal of Education, V, XXVI, 1887,

D. 21 fig. XIII; Hopkins' Geem., 1896, p. 91, fig.
VI; Edw. Geom., 1895, p. 160, fig. (31); Am. Math.
Mo., 1898, Vol. V, p. T4, proof LXXX; Heath's Math.
Monographs, No.

-

1, 1900, p. 26, proof XI. !
b. From this figure deduce an algebraic proof.

I
o~ . s
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| ‘ E
In fIg. 251, draw LM perp.
to AB through H, extend ED to M, and
draw BG, BM, HK and HC.
5q. AK = rect. LB + rect. LA
= (paral. KHMB = 2 tri. MBE = sq. HD)
+ (2 tri. AHC = 2 tri. AGB = .sq. HG)
= sq. HD. + sq. HG.
' " 8q. upon AB = sq..upon BH
-+ 8q.-upon AH. .. h® = a2 + p2,
a. See Jury Wipper, 1880,
p. 15, fig. 8; Versluys, p. 15, fig.
Fig. 251 11.

b. An algebraic proof follows
the "mean prop'1l" principle.

-
J

One Hundred Fifty-Four

—

- o IR - Pg - 252 -extendED to Qs 0 T T
BD to R,.draw HQ perp. to AB, CN
perp. to AH, KM perp. to CN and ex-
tend BH to L. o '
o Sq. AK = tri. ABH common to
sq's AK and HG + (tri. BKL = trap.
; HEDP of sq. HD + tri. QPD of sq. HG)
§§:Q, + (tri. KCM = tri. BAR of sq. HG)
ﬂj‘ -+ (tri. CAN = trap. QFBP of sq. HG
+ tri. PBH of-sq. HD) + (sq. MN = sq.
Fig, 252 RQ) = sq. HD + sq. HG. T
- o " 8q. upon AB = sq. ‘upon .BH
+ 3q. upon-AH. . h%® = a2 + p2_ o
a. See Edwards' Geom., 1895, p. 157, rig.
(13); Am. Math. Mo., V. V, 1898, p. T4, proof LXXXIT.

" In fig. 253, extend ED to P, draw HP, draw
CM perp. to AH, and XL perp. to CM.
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Sq. AK = tri, Al]\\;g common to
Cr"‘"—'”’( sq's AK and NG + trap. ENBH. common

/ to sq's AK and HD + (tri, BOH = tri.

BND of sq. HD) + (trap. KLMO = trap.
_AGPN) + (tri. KCL = tri., PHE of sq.

A HG).+ (tri. CAM = tri. HPF of sq. HG)
" 3 = sq. HD + sq. HG.
s F /. 8q. upon AB = sq., upon BH
J'P + sq upon AH. . h%® = a% + b2,
. a. Original with the author,
Fig. 253 Augus.t 3, 1890.

b. Many other proofs may be
‘j.devis‘ed from this type of figure.

- o S CE S ome T o G o G s don e o q-—-—

In fig. 254, extend
9\ GA to M.making AM = AG, GF to
I Rl N_making FN:= BH, complete the

CA \ . rect. MN, and extend AH and
TN —:% DB to P and 0 resp'ly and BH

\
'El/' \ ., /i to R. .
) | : \ Sq. AK = rect. MN
|

e \ (rect. BN +.3 tri, ABH -

JR UL /ﬁ + trap, AGFB) = (sq. HD = sq.
"N\~ %7  DH) + dq. HG + rect. BN
\\®~ ~F + [rect. AL = (rect. HL = 2
‘ G\//  trl. ABH) + (sq. AP"= tri. ABH
. ¥+ trap. AGFB)] = sq. HD + sq.
Fig. 254 . ,  HG + rect. BN + 2 tri ABH

{ + tri, ABH + trap. AGFB - rect.
=3 tri, ABH - trap. AGFB = sq. HD + sqs HG.

L ” . . 8q. upon AB = sq. upon BH + sq. upon AH.

| ~ h% = a® + b®, Q.E.D, '

AN a. See Jury Wipper, 1880, p. 22, fig. 16,

5 credited by Joh. Hoffmann in "Der Pythagoraische
Lehrsatz," 1821, to Henry Boad, of London, England.

et e
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In fig. 255 we have sq. AK
=parts 1 + 2 + 3. + 4 + 5 + 6; sq. HD
= parts 2 + 3'; sq. HG = parts 1 + 4!
+ (7 =5)+. (6 = 2); so sq. AK(1 + 2
+3+4+5+6)=sq. HD[2 + (3'=3)]
+ sq. HG[1 + (4 4y + (7 L7 A L R——
+ (2 =6)]. . - '
1?}' . 8q. upon AB = sq. upon HD .
L + 8q. upon HAY . h® = a2 4+ p2, Q.E.D.
(g a. Richard A.Bell, of Cleve-
- land, 0., -devised above proof, Nov,
Fig. 255 30, 1920 and gave it to me Feb. 28,
\ 1938. He has 2 others, among his
40, 1ike unto it,. i ’ : .

4

) ' L

J

This type includes all proofs derived from a'
figure in which there has beenc a translation from its

- ' ‘ normal position of one or more of the constructed \
squares., ) -

' Symbolizing the hypotenuse-square by h, the .

shorter-leg-square by a, and the longey-leg-square

by b, we find, by inspection, that there are seven

distinct cases possible in this I-type figure, and

that each of the first three cases have four possible -

arrangements, each of the second three cases have two

possible arrangements, and the seventh case has but.-

oné arrangement, thus giving 19 sub-types, as follows:

- " . (1) Translation of the h-square, with
a) The a- and b-squares constructed outwardly.
(6) THe a-sq. const'd out'ly and the b-sq. over-
lapping. o
(¢) The b-sq. const'd out'ly and the z-sq. over-
' lapping. ’
(d) The a- and b-sq's const'd overlapping.

&
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(2) Translation of the a-square, with
(a) The h- and b-sq's cohst'd out'ly.
(b) The h-sq. const'd out'ly and the b-sq. over-
lapping.

" (c) The b-sq. const'd out'ly and thé h-sq. ovep- -

lapping. o
(d) The h- and b-sq's const'd overlapping.

- {3)Y*Pranslation of the b-square, with -

(2) The h- and a-sq's const'd out'ly. .
(b) The, h-sq. const'd out'ly and the a-sq. over-
lapping. o - s
(c) The a-sq. const'd out'ly and the h-sq. over-
lapping. ) X '
(@) The h- and a-sq's const'd overlapping.
(4) Translation of the h- and a-sq's, with
(a) The b-sq. const'd out'ly.
(b) The b-sq. overlapping.
(5) Translation of the h- and b-sq's with
(a) The a-sq. const'd out'ly. -

(b) ThE &-8q. const'd overlapping. =
(6) Translation of the a- and b-sq's, with
(a) The h-sq. const'd out'ly.
" (b) The h-sq. const'd overlapping.
(7) Translation of all three, h-, a- and b-squares.

From the sources of proofs Qonsulﬁed, I dis-
covered that only 8 out of the possible 19 cases had

" . preceived consideration. To complete the gap of the

11 missing ones I have devised a proof for each miss-
ing case, as by the Law of Dissection (see fig. 111,
proof Ten) a proof is readily produced for any posi-
tion of the squares. Like Agassiz's student, after
proper observgz;on he found the law, and then the ar-
rangement of-parts (scales) produced desired results.
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'/”\\K Case (1), (a). »
70\ In flg. 256, the\§q o
C.” f \\ upon the \h gtenuse, hereafiter
<z S~ called the h-sq. has been
P /D 71 translated to theﬁposition HK.
6, - A ,,'ii _From P the middle pt. of AB
<: N \ drav PM making HM = AH; draw
\ ‘ % LM, KM, and CM; drdw KN = LM,
) Ve perp. to LM produced, and CO
A = AB, perp. to HM.
, Co Sq. HK = (2 tri. HMC
Fig. 256 = HM x CO = sq. AH) .+ (2 tri.

{ MLK = M_]':,*X%K'N\'_ = 8q. ‘BH) = 8q.
BH + sq. AH. o |
<+8q. ‘upon AB = sq. upon BH + sq: upon AH.~
S h?® = a® + b3, : - ‘
a. Original with the author, August %, 1900,

several other proofs from this figure is possible.

v e e = > = s G — . ——

) In fig. 257, the
position of the sq's are
evident, as the b-sq.
overlaps and the h-sq. 1s
translated to right- of
normal position. Draw PM
perp.” to AB ‘through B,
take KI. = PB, draw 1€,
and BN and KO perp. to
: S Fig. 257 LC, and FT perp. to BN.
§ - Sq. BK = (trap.

FCNT = trap. PBDE) + (tri. CKO = tri. ABH) + (tri.
"KLO = tri, BPH) + (quad. BOLQ + tri. BTF-= trap. GFBA)
: = s8q. BH + sq. AH. ! ‘ '

3 N - . -+ 8q. upon AB = sq. upon BH + sq. upon AH.
| ‘ : ~h® = a? 4 b2, -
{ “ a. One of my dissection devices. s
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~ _One_Hundred Sixty

Case (1), (c).

In fig. 258, draw RA and
produce it to Q, and drew CO, LM
and KN each perp. -to RA.

Sq.- CK = (tri. COA = tri.
PDB) + (trap. CLMO + trap. PBHE)
+ (tri. NRK = tri. AQG) + (quad.
NKPA + tri. RML = tpap.,AHFQ)
= sq. HB + sd. CK. \

. 8q. upon AB = sq. upon

L '}\( %4 - BH + sq. upon AH. .. h% = a®+ Db~
L\q/,/ a. Devised, by author, -
R to cover Case (1), (c). -

Fig. 258 ‘ o
One_Hundred Sixty-One
— Produce-HA-to-P-making
AF _ AP = HB, draw PN par. to AB, and
R\ through A draw:ON perp. to and
G :P____\L’__q = to AB, complete sq. OL, produce
< ' | MO to G and draw HK perp. to AB.
\\" ] ) Sq. OL = (rect. AL Tl
\! ‘B“"E“parETT—?DBAfE‘sq. HD) + (rect.
A AM = paral. ABCG = sq. HG#A= sq.

—
T/ 2 ML EB+ sq. RO
> . sq. upon AB = s8Q. upon
- Fig. 259 / ,HD + sq. upon HA. s h® = af
+ b%. Q.E.D. . '
. a. See Versluys, p. 27, fig. 23, as found in
"Priend of Wisdom," 1887, as given by J. de Gelder,
1810, in Geom. of Van Kunze, 1842.
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-4 One _Hundred Sixty-Two

T — " A Wy S et Gt S v ot o Sy s G oo

L

Case (1), (a).

Draw HO perp. to AB and
equal to HA, and KP ‘par. to AB and
equal to-HB; draw CN par. to AB,
PL, EF, and extend ED to R and BD
to Q. ._

Sq. CK = (tri. LKP = trap.
\N/'  ESBH of sq. HD + tri..ASE of sq.,HG)
+ (tri. HOB = tri, SDB of sg. HD
Fig. 260 + trap. AQDS of sq. HG) + (tri. CNH
, = tri., FHE of sq. HG) + (tri. CLT
'tri. FER of $q. HG) + sq. TO = sg. DG of sq. HG
‘ = sq. HD + sg. HG. : »
" sq. upon AB = sq. upon BH + sq. upon AH.
-~ h% = a® + b2, Q.E.D.
o a. Concelved, by author, to cover case (1),

(4). .

One—Hundred—Sixty-Three

Case (2),>(a).\

In fig. 261, with
sq's placed as in the figure, -
draw HL perp. to CK, CO and
BN par..to AH, making BN
= BH, and draw KN, ‘

1Sq. AK = rect. BL
+ rect. AL = (paral. OKBH
= sq. BD) + (paral. COHA
= sq. AF) = sq. BD + sq. HG.
. 8q. upon AB = sq.
e —— vpon BH + sq. upon AH. . h?
Fig. 261 = a2 + b2,

a. Devised, by author,

to cover Case (2), (a).
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1

e e R e R T RS PP PP SR . AP A

In fig. 262, the sq. AK
= parts 1 + 2 + 3 +4 + 5 + 6.
+(16r .Sq. HD = parts (12 = 5)
+ (13 = 4) of 'sq. AK. Sq. HG
= parts (9. = 1).+ (10 = 2) + (11
=6) + (14 16) + (15 = 3) of
8q. AK.

’. 8q. upon AB = s8q. upon
HD + sq. upon HA. .. h2 = a® + b%,
Q.E.D. : '
a. This dissection and
proof 1s that of Richard A. Bell,

: Y
Pl "@K devised by him July 13, 1914, and

given to me Feb. 28. 1938.

——-———---——-——.. - g - o

-MM_Q_§“migubwfb) --For_ which are

more proofs extant than for
: any other of these 19 cases=-
\ Why? Because of the obvious
' dissection of the resulting

In fig. 263, extend FG to

/{\)& “#/'5 C. Sq.. AK = (pentagon AGMKB

“M_"

Fig. 263

quad AGNB. common to sq's AK
and AF + tri. KNM common to sq S
AK and FK) + (tri. ACG = tri. BNF

+ trap, NKDF) + (tri./CKM =tri. ABH) = sq. FK + sq.

AF.-

Geom. ,

I

u sq. upon AB sq. upon BH + sq. upon AH,.
~h%® =a% + b2,

a. See HillVs Geom. for Begﬂnners, 1886, p.
154, proof I; Bemar and Smith's New Plane and Solid '
1899, p. 104 fig. Y4; Versluys, p. 22, fig. 20,
as given by Schlémilch, 1849, &lso F. C. Boon, proof"
7, p. 105; also Dr. Leltzmann p. 18, fig. 20; also

figures. ’
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. N : #
Joseph Zelson, &a 17 year-old boy in West Phila., ﬁﬁu

- High School, 1937. , o

b. This figure 1is of specilal interest as ‘the

sq. MD may occupy 15 other positions having common .
vertex with sq. AK and its sides coincident with side

or sides produced of sq. HG. One such solution is

that of fig. 256. “ ‘

One Hundred Sixty-$ix
In fig. 264, extend FG to C.
Sq. AK = quad. AGPB common to sq's
AK and AF + (tri. ACG = tri. ABH)
.+ (tri. CME = tri. BPF) + (trap.
. EMKD common to sq's AK and EK).
+ (tri. KPD = tri. MLK) = sq. DL
+ sq. AF. - .
° <. 8q. upon AB = sq. upon BH
+ sq. upon AH. .. hZ% = a2 + b2,
a. See Edwards' Geom., 1895,

>

£1-g+(35-)—Dri-Led-tzmann;———— i
fig. 21. 4th Edition.

- .

p+161;
p. 18,

One _Hundred Sixty-Seven |

' In fig. 265, extend FG to C-
ahd const. sq. HM = sq. LD, the sq.
translated. . :

’ Sq. AK = (tri. ACG = tri.
ABH) + (tri. COE"= tri. BPF) + (trap.
* EOKL common to both sq's AK and LD,
“or = trap. NQBH) + (tri. KPL = tri. )
KOD = tri., BQM) + [(tri. BQM + poly- , o
gon AGPBMQ) = quad. AGPB common to |
sq's AK and AF] = sq. LD + sq. AF. ‘ -
. S, 8q. upon AB = sq. upon/BH g
+ sq. upon AH. . h% = a® + D%, .
‘aMSee Sci. Am. Sup., V. 70,
P. 359, Dec. 3, 1910, by A. R. Colburn.
5 b. I think it better to omit Colburn's sq. HM ~°
ﬁ : (not necessary), and thus reduce it to proof above.
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S *
e

A A x and draw KM par. to BH.
. t> 5q. AK = quad. AGNB common
, N ~(F to sq's AK and AF + (tri. ACG
; |\ | = tri. ABH) + (tri. CKM = trap.
; ' 18X GEpL ¢ tri BNF) + (tri. KNM = tri.
) CLs ___\_L}'l/( CLG) = sq. GE + sq. AF,
\ D “ sq. upon AB = sq.' upon BH
\\g,/’;b + sq. upon AH. . h% = a% + b2, ‘
a. See Edwards' Geom., 1895,
Fig. 266 p. 156, fig. .(8). | -

e
6\1_/,_.__._._5/( = 8g. AD + sq. AF,

~—‘ s ~l‘] e o - . L . o
In fig. 266, extend ED to

One _Hundred Sixty-Nine

w

In fig. 267, extend ED to
C and draw XP par. to HB.
5q. AK = quad. AGNB.com-

. mon to sq's AK and HG + (tri. ACG
= tri. CAE-= trap. EDMA + tri,
BNF) + (tri. CKP = tri. ABH)
+ (tri, PKN = tri. LAM) = sq. AD
+ sq. AF.

<« 8q. upon AB = sqg., upon
Fig. 267 BH + sq. upon AH. . h*== ;? :

s

+ b2,
...~ . a, See Am. Math. Mo., V.
VI, 1899, p. 33, proof LXXXVI.

In fig. 268, extend ED to
C, DN to B, and draw.EO par. to
AB, KL perp. to DB and HM pérp.
to EO; ’ .

5q. AK = rect. A0 +’rect.
CO = paral, AELB + paral. ECKL

) “ 8q. upon AB = sq. upon
Fig. 268 BH = sq. upon AH. -.. h2,= a®+ b2,




GEOMETRIC PROOFS 197

a. See Am. Math. Mo , Vol. VI, 1899, D. 33,
LXXXVIIT.

One_Hyndred Seventy-0One

In fig. 269, extend

HF to L and complete the sq.
HE. :
SG. AK = sq. HE - 4
tri. ABH = sq. CD + sq. HG
+ (2 rect. GL = 4 tri., ACG)
- 4 tri, ABH = sq. CD + sq.
HC.

.+~ 8q. upon AB = sq.
upon BH + sg. upon AH. .. h®
= a? + pZ

_ a._This is one of the
Fig. 269 conjectured proofs of Pytha-
goras; see Ball's Short Hist.
of Math., 1888, p. 24 Hopkins' Plane Geom., 1891,
p. 91, fig. IV; Edwerds' Geom., 1895, p. 162, fig.
(39); Beman ard Smith's New Plane Geori., 1899,(p.103,
fig. 2; Heath's Math. Monographs, No. 1, 1900, p. 18,
proof II. . ‘ )

Qag-ﬂunézgi-ﬁgxéaﬁleug

In fig. 270, extend FG to
C, draw HN perp. to CK and KM par
to HB. .

Sq. AK = rect. BN + rect.
AN = paral. BHMK + paral. HACM
= 8q. AD + sq. AF.

L7\ )\ | “ 8q. upon AB = sq.aupon
T I \ | BH + §8q. upon AH. . h® = a% + b2
< — IN MK a. See Am. Math. Mo., V.

’ VI, 1899, p. 33, proof LXXXVII,
Fig. 270 ‘ " b. In this figure'the giv-

en triangle may be either ACG,
CKM, HMF or BAL; taking either of these four triangles
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several proofs for each is possible. Again, by in-
spection, we observe that the given triangle may have
any one of seven other positions within the square
AGFH, right angles coinciding. Furthermore the
square upon the hypotenuse ma§ be constructed over-
lapping; ard for each different supposition as to the
figure there will result several proofs unlike any,
as to dissection, given heretofore. .

c. The simplicity and applicability bfofig-
ures under Case ,(2), (b) makes 1t worthy of note.

One _Hundred Seventy-Three

In fig. 271, sq. AK = sec-
tions [5 + (6 = 3) + (7T = 4)] .
+ [(8=1) + (9 =2)] =sq. HG
+ 8q. AE,
‘. 8q. upon AB = sq. upon
BH + sq. upon HA. .. h% = a®+ b2,
Q.E.D.

’ a.‘ngised by Richard Bell, °
Cleveland, 0.,}on July 4, 1914,
one of his 40 proofs.

v ..

Case (2), (c).

AE _ : ’ '
- I LN —~-~~In“——ﬂig-f2?2'7>*ED*‘be-j:ng*thfei*’ T
G M.\ sq. translated, the construction’ = '
B’ , f' \\ /] is evidegt. AK _ o AL
X | 2<, | q. AK = quad. common
v | . to sa's AK and AF + (tri. ABC
\ = tri, ACG) + (tri. BKD = trap.
N iB LKEF + tri. CLF) + tri. KLD common
A to sq's AK and ED = sq. ED + sq.
'Fig. 272 AF, ,
= ' S 8q. upon AB = sg. upon

BH + sq. upon AH. .~ h® = a2 + b2,

“~
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a. See Jury Wipper, 1880, p. 22, fig. 17, .as
given by von Hauff, in "Lehrbegriff der reinen Mathe-
matik," 1803; Heath's Math. Monographs, 1900, No. 2,
proof XX; Versluys, p. 29, fig. 27; Fourrey, p. 85-- .
A. Marre, from Sanscrit, "Yoncti Bacha", Dr. Leitz-
menn, p. 17, flg. 19, 4th edition. .

Qne _Hyndred Seventy-Fjive i

Having completed the

- - g \F--—f - three squares AK, HE and HG, draw, N e m—
ASIN 1 7K through H, LM perp. to AB and
> N ;/ | - joln HC, AN and AE. \ ,
~< 'Y . \ Sq. AK = [rect. LB ' v

14, fig. 6,

= 2(tri. KHP = tri, AEM) = sq. HD]
+ [rect. LA = 2(trl. HCA = tri.
"ACH) = sq. HG] = sq. HD + .sq. HG.
. 8q. upon AB = sq. upon
.HB + sq. upon HA.” . h® = a®+ b2
a. See Math. Mo. (1859), Vol. II, No. 2, Dem.

~ In fig. 274, since parts
2+ 3 = sq. on BH = sq. DE, it
1s readily seen that the sq. upon
AB = sq. upon BH + sq. upon AH.
. h? = a2 + b2,
- a.” Devised by Richard A.

his 40 proofs.: He submitted a
second dissection proof of same
figure, also his 3 proofs of Dec.
1l and 2, 1920 are similar to the
above, as to figure.

Bell, July 17, 1918, being one of
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Case (2), (d).

L In fig. 275, extend KB
Im N7 %K to P, CA to R, BH to L, draw KM
} \\/’ | perp. to BL, take MN = HB, and
| M |  draw NO par. to AH.
| 0 - Sq. AK = tri. ABH common
| to sq's AK and AF + (tri. BON
e " = tri, BPF) + (trap. NOKM = trap. ..
E7 N, PF DRAE) + (tri. KL = tri. ARQ)
S M + (quad. AHLC = quad. AGPB) =
-\ iﬁ Gf < AD + sq. AF. . '
* 8q. upon AB = sq. upon
Fig. 275 BH + sq. upon AH. .. h® = a2+ b2
a. See Am, Math. Mo., V.
- VI, 1899, p. 3k, proof XC.

Qne_Hyndred Seventy-Ejght

) In fig. 276, ipon CK
const. tri. CKP = tri. ABH, draw
CN par. to BH, KM par. to AH,
draw ML and through H draw PO. .
Sg. AK = rect. KO + rect.
(paral. PB = paral.CL = sq.
AD) + (parsl, PA = sq. AF) = sq.

AD + sq. AF.
- - - T T Tl upoh AB 'th“uﬁbﬁ"' -
BH + sq. upon AH. . h% = a2+ b2

a. Original with the ,
author, July 28, 1900, \\ -
b. An algebraic proof

comes readily from this figure.

Fx
[y
[12]
no
-3
[9)

PR
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. ' : . Case (3), (a).

In fig. 277, produce
DB to N, HB t6'T, KB to M, and
draw :CN, A0, KP and RQ perp.
to NB.
Sq. AK = (quad. CKPS
+ tri, BRQ = tnapﬂ BTFL )
+ (tri. KBP = tri. TBG )
+ (trap. OQRA trap. MBDE)
+ (tri. ASO = tri. BMH) = sq.

—_—— == HD + sq. GL . .
Fig. 277 - % sq. upon AB = sq.
, upon BH .+ sq: upon AH. .. h%
= a% + b2 ' )
. a. Devised for missing Case (3), (a), March
17, 1926.

& B -

Qne:Hyndred Eighty
Caée,KB),x( b). ’ o

In. fig. 278, extend ED to
K and thraugh D draw.GM par. to

AB, <
i // XP___Jpq . 8q. AKX = rect. AM + rect.
’ | CM = (paral. GB = sq. HD) + ﬁ@g@l. ‘
© : ' \\ l / .| CD'= sq.AGF) = 8q. .HD + sq. GF.
- | 7 s 8Qq. upon AB = sq. upon
j ‘ O - - —"JK BH + sq. upon AH., .. h% = a2+ b3
\ — Figi 278 -—---a7—See-Am.~-Math: Moy -~ - -

Vol. VI, 1899, p. 33, proof LXXXV,
b. This figure furnishes an algebrailc proof..
c. If any of the triangles congruent to tri.
ABH 1s tgken as the given triangle, a figure express-
Ing a different relation of the squares is obtained,
hence covering some other case of the 19 possible
cases, '

é
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One_Hyndred Eighty-Qne
Extend HA to G making
AG = HB, HB to M making B5M
) = HA, complete the square's
A HD, EC, AK and HL. Number the
G/// \d/ AN dissected parts, omitting the
tri's CLK and KMB.

|
N ARG Sq. (AK=1+14+5
\ ! /’5 s 6) “parts (1 commerd to sq's
2 YK HD and AK) + (4 common to sq's
\ AN - ’ EC and AK) + (5 = 2 of sq. HD -
N + 3 of sq. EC) + (6 = 7 of sq.

EC) = parts (1 + 2) + parts
Fig. 279 (3+ %+ 7)=sq. HD + sq. EC.
: ", sq. upon AB = sq.
upon BH + sq. upon AH. .. h® = a? + b2, Q.E.D,’
" a. See "Geometric Exercises in Paper Folding"
by T. Sundra Row, edited by Beman end Smith (2905 ),
‘p. 14,

Qne Hundred Ejghty-Tuo

' In fig. 280, extend EF.
to K, and HL perp. to CK.
' Sq. AK = rect. BL + rect.

]' AL = paral. BF + paral. AF = sq.
‘ 7 \ | HD + sq. GF.
G/ I \8/ | . . . 8Q. upon AB = sq._upon_
N 0F | BH + sq. upon AH. . h® = a®+ D%
I U P BN a. See Am, Math Mo., V.
©oNL-T e Ng VI, 1899, p. 33, proof LIXXIV.
Cr — =4 ‘

In fig. 281, extend EF to K.
S5q. AK = quad. ACFL common to sq's AK and GF




——

_Ed'n, V. XXV, 1887, p. 404, fig. II; Hopkins' Plane

5~geometry should use this paper folding proof

R TR T TRATRTEATE
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+ (tri. CKF = trap. LBHE + tri.
ALE) + (tri. KBD =-tri. CAG)-

A + tri. BDL common to sq's AK and
A P HD = sq. HD + sq. AK.
AV ' . 8q. upon AB = sq. ,upon
N | DAF | N BH + sq. upon AH. .. h% = a2 + b2
N | PR - a. See Olney's Geom.,

- ‘U( Part III, 1872, p. 250, 2nd meth-
- od; Jury Wipper, 1880, p. 23, fig.

Fig. 281 18; proof by E. Forbes, Winches-

ter, N.H., as glven in Jour. of
Ed'n, V. XXVIII, 1888, p. 17, 25th proof; Jour. of

Geom., 1891, p. 91, fig. III; Edwards' Geom., 1895,

- p. 155, fig. (5); Math. Mo., V. VI, 1899, p. 33,

proof LXXXIII; Heath's Math. Monographs, No. 1, 1900,
p. 21, proof V; Geometric Exercises in Paper Folding,
by T. Sundra Row, fig. 13, p. 14 of 2nd Edition of
The Open Court Pub. Co., 1905. Every teachesr of

Also see Versluys, p. 29, fig. 26, 3rd para-

" graph, Clairaut, 1741, and found in "Yoncti Bacha";

also Math, Mo., 1858, Vol. I, p. 160, Dem. 10, and N
D. 46 Vol. I, where credited to Rev. A. D. Wheeler.
b. By dissection'an easy proof results. Also
by algebra, as (in fig. 281) CKBHG = a2 + b%® + ab;
vhence readily h? = a2 + b2,
c. Fig..280 1s fig. 281 with the extra line
HL; fig. 281 gives a proof by congruency, while fig.

¥

o 280 glves a proof by equivalency, -and i1tralso gilves

a proof, by algebra, by the use of the mean propor-

-

—tional., - — R ——

d. Versluys, p:“20, connects this. proof with
Macay; Van Schooter, 1657; J. C. Sturm, 16893 Dobrin-
er; and Clairaut.

Qne Hundred Ejghty-Four

In fig. 282, from the dissection it is obvi-
ous "that the sq.-upon AB = sq. upon BH + sq. upon AH.
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' .. ABZ = BHZ + HA2, or h®
= a? + b2, ' }

a. Devised by R. -A. Bell,
Cleveland, 0., on Nov. 30, 1920,
and given to the auﬁhor Feb. 28,
1938,

Case (3), (c).

In fig. 283, draw KL perp.
to CG and extend BH to M.
Sq. AKX = (tri. ABH = tri.
,,/AF CKF) + tri. BNH common to sq's AK
(- ./ s~y ~ end HD + (quad. CGNK = sq. LH -
N —~ ‘;:ﬂ;h + trap. MHNK + tri. KCL common to
M7 Y sqrs AK and FG) + triy GAG = trap.
\ BDEN + tri, KNE) = sq. HD + sq. FG. -
1 Q 4 . 8q. upon AB = sq upon
| s 4 BH + sq. upon AH, .. hZ% = a? + bZ .
A , - Q.E.D. ‘ : S
Fig. 283 . a. See Sci. Am. Sup., Vol.
) 70,  p. 383, Dec. 10, 1910, in
which proof A, R Colburn makes 'T- the given tri., and
then substitutes part 2 for part 1, part 3 for parts
4 and 5, thus showing sq. AK = sq. HD + sq. FG; also
'see ‘Versluys, p. 31, fig. 28, Geom., of M. Sauvens,
1753 :(1716). - ‘ .

Rl sk A

In fig. 284, the construc-
tion 1is evident, FG being the
translated b-square. _

Sq. AK = quad. GLKC common
. to sq's AK &nd CE + “(tri. CAG -

= trap. BDEL + 'tri. KLE) + (tri.
ABH = tri, CKF) + tri. BLH Gommon
to s8q's AK and HD = = sq. HD + sq.
CE. '

ld




GEOMETRIC PROOFS 205

. 8q. upon AB = sq. upon BH +°sq. upon AH. ,
-~ h® = a® + b2, ,

a. See Halsted's Elements of Geom., 1895,
p. 78, theorem XXXVII; Edwards' Geom., 1895, p. 156,
fig. (6); Heath!'s Math. Monographs, No. 1, 1900, p. ‘
27, proof XIII. ' | ' - |

Qng_Hundred Eighty-Seven

In fig. 285 it is ob-
vious that the parts in the
' 8q. HD and HF are the same’
in number and congruent to
the parts in the square AK.
’ .. the sq.fupon AB
= sq. upon BH + sq. upon AH,
or h®?%= a? + b2,
a. One of R, A, Bell's
proofs, of Dec. 3, 1920 and

received Feb. 28, 1938,

&

One-Hundred Eighty-Eight.

Case (3), (a).

] In. fig. 286, produce AH
to 0, draw CN par. to HB, and ex-
tend CA. to G, ’

Sq: AK = trap. EMBH com-
mon to sq's AK and HD + (tri. BOH
= tri. BMD) + (quad. NOKC.= quad.

; | L e ‘ V’\ ," FMAG) + (tri., CAN = tri. GAL )
: : < ! " + tri. AME common.to sq's AKX and
‘ , _ \\ J ,i— EG = sq. HD + sq. LF. '
‘ - N P . 8q. upon AB = sq. upon
\ 7 ©+ 84. Upo ; q‘2 P 2
G BH + sq. upon AH. .. h®" = a + b~
Fig. 286 a. See Am. Math. Mo.,

- ©- " Vol. VI, 1899, p. 34, proof

? ’ b. As the relative position of the given tri-
o o angle and the translated square may be indefinitely
o .

N3
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- varied, so the number of proofs must be indefinitely
great, of which the fpllowing two are examplews,

. In fig. 287, produce BH
to Q, HA to L and ED to F, and
draw KN perp. to QB and connect.A
and G,

Sq. AK = tri. APE common
to sq's AK and EG + trap. PBHE
common to sq's HD and AK + (tri.
BKN = tri. GAL) + (tri. NKQ
= tri, DBP) + (quad. AHQC = quad.
GFPA) = sq. HD + sq. HA.

" .~ 8q. upon AB = sq.. upon-

&/’ HD + sq. upon HA. ."h® = a%+ b2
T a. This fig. and proof

Fig. 287 due to R. A, Bell of Cleveland, O.

He gave 1t to the author Feb. 27,

i . 1938.

mene Hyndred Ninety

//hL In fig. 288, draw IM -
C.” :\\ through H. .
g ""AIK 8q. AK.= rect. KM + rect.
CM
|

= paral KH + paral.CH = sq.
+ (sq. on AH = sq. NF).

o a4 A
- AH ' S 8Q.-upon AB = sq. upon
! BH + sq. upon AH. .. h® = a® + b=
ALK B a. Original with the

_ NIRR ™. author, July 28, 1900.
T . 'y ‘ ;1§’F. - b. An algebralc solution
\\ /> may be devisgd‘from this figure.
; h ’,’
ﬁ . ‘ R
Fig." 288
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Qne_Hyndred Ninety-One

Case (4), {a).

In fig. 289, extend

KH to T making NT = AH, draw
. TC, draw FR, MN and PO perp.
" to KH, and draw HS par. to

- Sq. CK = (quad. CMNH
+ tri, KPO = quad. SHFG)
+ tri. MKN = tri. 'HSA)
+ (trap. FROP = trap. EDLB)
+ (tri. FHR = tri.:ECB) =

Fig. 289 - - CD + sq. GH. -

z sq upon AB sq.

upon BH + sq. upon AH. .. h® = a® + b2 .

a. Devised by author for case (4), (a) March

- 18, 1926,

Case (4),. ().

In fig. 290, draw GP
par. to AB, take LS = AH,
draw XS, draw LO, CN and QM
perp. to KS, and.draw BR.

Sq. AK = (tri. CNK

> = tri, ABH) + (tri. KQM _

\ / e \\;, D - tri, FBR) + (trap. QLOM
AN, 780 = trap. PGED) + (tri. SOL
K v 8 = tri. GPR) + (quad. CNSA
= quad. AGRB) = sq. GD + sq.
Fig. 290 AF,

: " a sq.'upon AB = sq.
upon BH + sq. upon AH. ., h2 = a2 + b2 .
a. Devised by author fﬁp Case (4), (b).
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Qne Hundred Ninety-Three

Case (5), fa);

"In fig. 291, CE and AF
are the translated sq's; pro-
duce GF to 0 and complete the
sq. MO; produce HE to S and
complete the sq. US; produce
OB to Q, draw MF, draw WH,
draw ST and UV perp. to WH,
and take TX = HB and draw XY
perp. to WH. Since sq. MO
= sq. AF, and sq. US-= sq. CE,
and since sq. RW = (quad. URHV
+ tri. WYX = trap. MFOB + (tri.
HST = tri. BQH) + (tPap. TSYX
= trap. BDEQ) + tri. UVW.
= trl, MFN) = sq..HD + (sq. NB

= 3q. AF).
: * s 8q. RW = sq. upon AB = sq. upon BH + sq. .
upon AH., . h%® = &® + b2, ‘ . -
, a. Devised Mareh 18, 1926, for Case (5), (a), -
. " by author. " -
) One Hundred NKineiy-Foyr

Bxtend HA to G mak-
ing AG = HB; extend HB to D

I'd

meking BD.=_HA. . Complete . ..
gq's PD-and PG, Draw HQ
perp., to CK and through P
arew LM and TU par. to AB.

!
AL Ny T PR=CO=BN. -
%,’ ; \7‘: é’:,\ ‘ ; ‘I'hz trqgslated sc{:"s
2 SR are PD = BE' gnd PG = HG',
g_}.""":m | ?Vs? ;Tl" 3_?“, o Sq. AK = parts {1
N /{'R?'\\'l}(ﬁ,'is +2+3+4+54+6+7+8)
gl RY MK = perts (3 + 4 + 5+ 6 = 30.
' PD) + parta-{1 + 2 + 7 + 8)

¥ig. 292
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~. 8q. upon AB = sq. upon HB + sqg. upon HA.
~ h® = a2 + b2, Q.E.D.
' a. See Versluys, p. 35, fig. 34,

One_Hundred Ningty-Five

e M Case (5), (b) ‘ -34
- \ * In fig. 293, draw GL

*“”f*{iﬁéiﬁ?z \\ through B, and draw PQ, CO and
X (L*“"“' MN perp. to BL.
y 0 : . Sq. BK = (tri. CBO = tri.
) 1~ BGD) + (quad. OCKL + tri. BPO
Q/‘? " = trap. GFRB) + (tri. MLN = tri.
N 3 .7 \ BSD) + (trap. PQNM = trap. SEHB)
3,7 _ .
.- v \ = sq HD + sq. DF.
'_‘D‘\ /z 2 ) . 8q. upon AB = sq. upon
\ |, /fF, ‘BH + sq. upon AH R h2 = a% + b2
GNL//’“ " 'a. Devised for Case (5),
| ) (b), by the author, March 28,
. Fig. 293 1926,
Qne Hyndred Ninety-Six
Case (6), (a).
H ‘ In fig. 294, extend
A B~ LE end FG to M thus completing
- N\ the sq. HM, and draw DM.
5,/’\ //nv © 8q. AK + 4 tri. ABC
\D, i \ = s8q., HM = sq. LD + sq. DF
\ 7\ | } + (2 rect. HD = 4 tri, ABC),
. E ' l‘\\ '//'F from which sq. AK = sq. 1D
(ﬂq--?'“‘EE}k'« + 8q. DF. -
h _ . 8q. upon AB = sq.
® \‘l,m/ upon BH + sq. upon AH. .'.qh2
Fig. 294 = & + b '

‘a, This proof 1s cred-
ited to M. McIntosh of Whitwater, Wis. See Jour. of
Ed'n," 1888, Vol. XXVII, p. 327, seventeenth proof.

3 -

R
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One Hyndred Ninety=-Seven

Sq. AK = sq. HM - (4
tri. ABH = 2 rect. HL = sq. EL
+ sq. L¥ + 2 r&éct. HL - 2 rect.
HL = sq. EL + sq. LF.

7 + % 8q. upon AB = sq.
{/’ { > L/'/ ;" upon HB t sq. upon HA, .~ hz‘
‘ -\ = a% + p®

| > a. See Journal of Edu-
i i #F cation, 1887, Vol. XXVI, p. 21,

XVK fig. XII; Iowa Grand Lodge Bul-
o G letin, F and A.M., Vol. 30, No.
2, p. 44, fig. 2, of Feb.-1929.

Fig. 295 Also Dr. Leitzmann, p. 20, fig.

24, 4th Ed'n.

b An algebraic proof is ha (a + b)® - 2ab

= a® + b® =

¥ ) g ) .

one _Hundred Njnety-Eight

@

day

- g In fig. 296, the
H translation is evidents--
Take CM = KD. Draw AM;
A then draw GR, CN and BO
par. to AH and DU par. to’
lE”"""*’ 7 BH. Take NP = BH and
\0’ draw PQ par. to AH.
Sq. AK = (tri. _

'T
S i CMN = tri. DEU) + (trap.
"g ‘C - Ix-@x CNPQ = trap. TKDU)

Fig. 296 + (quad. OMRB + tri. AQP)
= trap. FGRQ) + tri. AOB
= tri. GCR) = sq. EK + sq. FC.
S 8q. upon AB = sq. upon HB + sq. upon HA.-
» h® = a% +p%. Q.E.D.
a. Devised by the author, March 28, 1926.

-
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In fig. 297, the trans-

lation and construction is ev-
H

ident. :
Sq. AK = (tri. CRP
~ : \ = tri, BVE) + (trap. ANST
7 l \ *./§ { \ = trap. BMDV) + (quad. NRKB
E" + tri. TSB =.trap. AFGC) + tri

[ N<p\ o)
: ) ACP common to sq. AK and AG
NEPLN

Pd -
\ Yy = sq. ME + sq. FP.
é\/gv—"’}é“'k s 8q. upon AB = sq.
' upon BH'+ sq. upon AH. .. h®
Fig. 297 = a® + b2, ‘

) a. Devised by author,
March 26, 1926, 10 p.m.

H

e Lo s e s e e e

Two _Hundred

In fig. 298, the sq.
on AH is translated to posi-

ElC = /1b . tion of GC, and the sq. on HB
i 5 7y 5 to position of .GD. Complete
" '///L‘ . the figure and conceive the
Gl"‘,‘/"‘i'5 N Y : sum of the two sq's EL and GC
T& — 7&“{N \SXp34 as the two rect's EM + TC
) : f\\\glj / ;§’€ } + sq. LN and the dissection
3 N "5 N\ as numbered. o :
F——¥—-—7 Sq. AK = (tri. ACP
= tri. DTM) + (tri. CKQ
Fig. 298 = tri. TDE) + (tri. KBR i
= tri. CTO) + (tri. BAS | '
= tri. TCN) + (sq. SQ = sq. LN)'= sq..EL + sq. GC. ’

, "~ 8q. upon AB = sq. upon BH + sq. upon AH..
. h? = a? + b2, . :

a. Devised by author, ‘March 22, 1926.

b. As sq. EL, having a vertex aifd a side in
common with a vertex and a side of sq. GC, either ex-
ternally (as in fig. 298), or internally, may have 12

¢ different positions, and as sq. GC may have a vertex °
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and a si”e in common with the fixed sq. AK, or in
common with the given triangle ABH, giving 15 differ-
ent positions, there ls possible 180 - 3 = 177 dif-
ferent figures, hence 176 proofs other than the one
given above, using the dissection as used here, and
178 more proofs by using the dissection as given in
proof Ten, flg. 111, -

¢. This proof is a variation of. that given
in proof Eleven, fig. 112,

~ ‘ Iwo_Hundred Qne

. £ , .
‘ cT — ~ .In fig. 299, the’
. construction is evident,
as FO is the translation
) of the sq. on AH, and KE
is the translation of the
i .sq. on BH.
7&/ "V Since rect. CN
| ;if\, { = rect. QE, we have sq.
‘ ,__" e \'!JL AK = (tri. LKV = tri, CPL)
'IE"""" )""f‘—"" i\ ""% + (tri. KBW = tri., LFC)
" | \« |+ (tri. BAT = trf. KQR)
b’ ) | }\_J + (tri. ALU = tri. RSK)
i-jﬂﬂ]’g J’t—* ‘E( + (sq. TV = sd. MO)
- e Q==aR _ ect. KR + rect. FP
o Fig. 299 + sq. MO = sq. KE + sq.
' FO.

sq. ﬁpon AB = sq. upon BH + sq. upon AH,

a. Devised by the author, March 27, 1926.

. ' Two _Hyndred_Two
In fig. 300 the translation and construction
. are easlly seen.
- Sq. AK = (tri. CKN = tri. L¥G) + (trap. OTUM
=" trap. RESA) + (tri. VOB = tri. RAD + (quad. ACNV
-4 trl. TKU = quad. MKFL) = sq. DS + sq. MF.
\ R
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‘ .. sq. upon AB = sq.
upon HB + sq. upon HA, .. h®
= a? + b=, o
a. Devised by the
Q] author, March 27, 1926,
!u,\. | 10:40 p.m. - S

N

AR = AH and AD = BH., Com-
plete sq's on AR and AD. Extend DE
to S and draw SA and TR.

Sq. AK = (tri. QPB = tri.
VDR of sq. AF) + (trap. ALPQ = trap.

"ETAU of sq. AE) + (tri. CMA = gri, -
SGA of sq. AF) + (tri. CNM = tri,
2, 7P, UAD of sq. AE) + (trap. NKOL = trap.
' \\V% b : . VRFS of sq. AF) +3%(tri. OKB = tri.
’ 3/5 \ '~ DSA of sq. AF) = “parts 2 + 4 = sq. .
y ‘ AE) + (parts 1 + 3 + 5 + 6 = sq. AF).
. 8q. upon AB = sq..upon HB
Fig. 301 + sq. upon HA. ;. h® = a® + bZ.
Q.E.D.
a. Devised, by author, Nov. 16, 1933,

In fig. 302, complete
the sq. on EH, draw BD par. to
AH, and draw AL and KF perp.

| to DB. ’
| ' Sq. AK = sq. HG - (4
' ] _ v:/ [ .,M' tri, ABH = 2 rect. HL) = sq.
DL _ N EL + sq. DK + 2 rect. FM - 2
CR~7" 7~ rect. HL = sq. EL + sq. DK,
l N7 . i 1w, 8q. upon AB = sq.
- . GV upon HB + sq. upon HA. . h?
|  Fig. 302 = a? + b2, &

“«Z
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,&. See Edwards' Geom., 1895, p. 158, rig.
(19).
b. By changlng position of sq. FG, many other -~
proofs might be obtalned.
. ¢. This 1s & variation of proof, fig..240.“

e
W ! / \\‘,7
| /2
i .
- \RLT"V/S

. Fig. 303

In fig. 303, let W and X be sq's with sides
equal resp'y to AH and BH. Place them as in figure,
A belng center of sq. W, and 0, mlddle of AB as cen-
ter of FS. ST ="BH, TF = AH. Sides of sq's FV and
QS are perp. to sides AH.and BH.,

. - It 1s obvious that:
" Sq. AK = (purts’l + 2 + 3 + 4 sq. FV) + sq.
QS = sq. X + sq. W.. ’
’. 8q. upon AB = sq. upon HB + sq. upon HA,
. h® = a2 + b2,

a. See Messenger of Math., Vol. 2, p. 103,

1873, and there credited to Henry Perigal, F.R.S:A.S.

-ﬂuadt:i-ﬁl&

Case (6), (b).

In fig. 304, the construction
1s evident. 8q. AK = (trl;. ABH
= trap. KEMN + tri, KOF) + (tri. BOH
= tri. KLN) + quad, GOKC common. to
sq's AK and CF + (tri. CAG = tri. CKE)
Fig. 304 = 8q. MK + sq. CF. : ‘
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. 8q. upon AB = sq. upon BH + sq. upon AH.
- h%? = a2 + b2, Q.E.D. \ ~
a. See Hopkins' Plane Geom., 1891, p. 92, fig
fig. VIII. : | ‘ o
b. By drawing & line EH, a proof through par- <« Co
allelogram, may be obtained. Also an algebraic proof.
¢. Also any one of the other three. triangles, .
as CAG may be called the given triangle, from which
other proofs would follow. Furthermore since the tri.
ABH may have seven other positions leaving side of
sq. AK as hypotenuse, and the sq. MK may have 12 po--
sitions having a side and a vertex in common with sq.
CF, we would have.8% proofs, some-of whibh have been
or will be given; etc., etc., as to sq. CF, one of
which 1s the next proof. '

»

Two_Hyndred Seven - - o

: In fig. 305, through H
~ draw LM, and draw CN par. to BH .
~and KO par., to AH, ' i o
Sq. AK =‘rect. KM + rect.
CM = paral. KH + paral. CH = HB
x KO + AH x CN = sq. on BH + §q. o V
on' AH = sq. MD + sg. MG. . '
: . 8q. upon AB = sq. upon j
f BH + sq. upon AH. . h? = a% + b=, S
a. Original with the
“author January 31, 1926, 3 p.m.

- Fig. 305 ’ - ///

Iwo _Hundred Ejght

&N

Case (7), (a).

"'In fig. 306, extend AB to X, draw WU and KS )
each = to AH and par. to AB, CV and HT perp. to AB,
GR and FP par. to|AB, and LW and AM perp. to AB.

e
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Sq. WK = (tri. CKS
= trli, FPL = trap., BYDX
of sq. BD + tri. FON oﬁ
sq. GF) + (tri. TKH = tri.
GRA = tri., BEX of sq. BD
> + trap. WQRA of sq.~GF)

+ (tri. WUH = tri., LWG of
) , sq. GF) +(tri. WCV = tri,
7‘”‘;’; 5@/ WLN of sq. GF)+ (sq. VT .
. paral. RO of sq. GF)
= 8q. BD + sq. GF.
Fig. 306 s 8Q. -upon AB = sq.
) upon HB + sq. upon HA.

~» h%® = a® + b2, Q.E.D.
a. Original with the autho”, Aug. 8, 190Q.
b. As 1in fig. 305 many other arrangements are
possible each of which will furnish .a proof or proofs.

AN

J

(A)——Proofs determined by arguments babed upon a
square.

This, type includes all proofs derived from
figures in which one or more of the squares are not
graphically represented. There are two leading class-

- es or sub-types in this type--first, the class in
which the determination of the proof is based upon a
square; second, the class in which the determination
of the proof is based upon a triangle.

As in the I-type, so here, by inspection we
find 6 sub-classes in our first sub-type which may be
symbolized thus: . o

- (1) The h-square omitted, with
. (a) The a- and b-squares const'd outwardly--
3 cases.
(b) The a-sq. const'd out'ly and the b- -sq.
" overlapping--3 cases,
-(c) The b-sq. const'd out'ly and the a-sq.
overlapping--3 cases.
(d) The a- and b-squares overlapping--3 cases.

o
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»

(2) The a-sq. omitted, with »
(a) The h- and b-sq's const'd out'ly--3 cases.
(b) The h-sq. const'd out'ly and the b-sq.
' overlapping--3 cases. .
(c) The b-sq. const'd out'ly and the h-sq.
overlapping--3 cases.
(d) The h- and b-sq's const'd afd overlapping
--3 cases.
(3) The b-sq. omitted, with
" (a) The h- and a-sq's const'd out'ly--3 cases.
(b) The h-sq. const'd out'ly and the a-sq.
T overlapping-u} cases,
(c) The a-sq. co st'd out'ly and the h-sq.

. overlapping--3 cases. N
(d) The h- and a-sq's const'd overlapping—-
| 3 cases.

() Tﬁe h- and a-sq's_omitted, with
(a)) The b-sq. const'd out'ly.
b The b-sq. const'd overlapping.
(03 The b-sq. translated--in all 3 cases.
() The h- and b-sq'd omitted, with
(a) The a-sq. const'd out'ly, -
(b) The .a-sq. const'd overlapping.
‘(c) The a-sq. translated--in all 3 cases.
(6) The a- andb-sq's omitted, with
} The h-sq. const'd out'ly.
(b} The h-sq.' const'd overlapping.
} The h-sq. translated—-in all 3 cases,

The total of these enumerated cases is 45 We
shall give but a few of these 45, leaving the re-
mainder to the ingenuity of the 1nterested student.

(7) All three squares omitted.
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e o Kee e A e S e - B -

Case (1),-(&).

‘Jﬂf | ‘ In fig. 307, produce
/,’ P ; GF to N a pt., on the perp. to
”/E | \0 AB at B, and extend DE to L,
f draw HL and AM penp to AB. *
The tri's AMG and ABH are - . ’
equal. ‘

3q. HD + sq. GH
= (paral. HO = paral. LP)
+ paral. MN = paral MP = AM

F;lg 307 - x AB = AB x AB = (AB)Z,
) ' s 8q. upon AB = sq. . -
upon BH + sq. upon AH. .. hZ = a% + b%,

a. Devised by author for case (1), (a),
March 20, 1926, '

b. See proof No. 88, fig. 188. By omitting
lines CK and HN in said figure we have fig. 307.
Therefore proof No. 209 is only a variation of proof
No. 88, fig. 188, : |

Analysis of proofs given will show that many

A;supposedly new proofs are only modififations of' some
more fundamental proof. b

Two _Hundred Ten

(Not a Pythagorean Proof.)

While case (1), (b) may be proved in some
other way, we have selected the following as being

© quite unique. It is due to the ingenuity of Mr,

Apthur R. Colburn of Washington, D.C., and is No. 97 .
of his 108 proofs.

It rests upon thé following Theorem on’ Paral-
lelogram, which is: "If from one end of the side of

in the opposite side, or the.opposite side extended,
and a line from the other end of saild first side be
drawn perpendicular to the first line, or 1its

%,
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extension, the product of these two drawn lines will
measure the area of ths parallelogram." Mr. Colburn
formulated this theorem and its use is discussed in
Vol. 4, p. 45, of the "Matnematics Teacher ," Dec.,
1911 I have not seen his proof, but nave demonourat-
ed it as f'ollows:

31X
&
i
:
:
3
;
b
k

In the paral.

E ¢ ABCD, from the end A of
7 "g::."’ the side &8, draw AF to
/ - \ // side DC produced, &nd
S - from B, the other end
= of side AB, draw BG
) .0 perp. to AF, Then AF
_ Fig. 308 X BG = area of paral.
’ . 4BCD. \
Proof: From D lay off DE = CF, and draw AE

and BF forming the paral. ABFE = paral. ABCD.
is a triangle and 1s one-half of ABFE.
tri. FAB =

ABF
The area of
3FA % BG; therefore the area of paral.
2 times the area of. the tri. JFAB, or FA » BG.
But the area of paral. ABFE = area of paral. ABCD.
. AF x BG measures the area of paral. ABCD,

Q.E.D,

By means of this parallelogram Theorem the

Pythagore@n Theorem can be proved in many cases, of
which here is one.

Twg Hundred Eleve
’/¥£ Case (1), (b).
Hoo VN In fig. 309, extend GF
j;? and ED te L completing the paral,
/s 1i~ AL, draw FE and extend AB to M. ~
A 3//,‘ Then by the paral. theorem:
\
\, o (1) EF x AM = AE x AG.
g\/’ (2) EF x BM = FL, x BF. _
. (1) - (2) = (3) EF(&M - BM)
Fig. 309 = AE x AG - PL x BF
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— )
(3) = (4) (BF = AB) x AB = AGFH + BDEH, or sq. AB 3
= sq. HG + sq. HD. ‘ ' :
. 8q. upon AB = sq. upon BH + sq. upon AH.
» 12 = a? + p2, . -
a. This is No. 97 of A. R. Colburn's 108
proofs, ’
. b. By inspecting this figure we discover in
it the flve dissected parts as set forth by my Law
of Dissection. See proof Ten, fig. 111.

. s oo G et s ot . P o G Bt B T S et VO et

Caze (2), (b).

.Tri. HAC
Tri, HAC = %
Tri. ACH = } rect. AL.

~ rect. AL = sq. HG. Similarly
rect. BL = sq: on HB. But rect. AL

]
ct
3
s

8
o s

» + rect. BL = sq. AK. .
. * 8q. upon AK = sq. upon HB
Fig. 310 + sq. upon HA., . h® = a® + b%,
Q.E.D,

a. Sent to me by J. Adams from The-Hague,
Holland. But the suthor not given. Recelved it
March 2, 1934,

Iwo Hundred Thirteen

Case (2), (c). o

C - 8-
fﬁi%i Rl In fig. 311, produce GA
7 :
to M making AM = HB, -draw BM,
and drgaw KL par. to AH and CO

\ . par. to BH.
ﬁNé/ \'B .. Sq. AK = 4 tri. ABH + sq. .
AN T me < LXBE L gy p)e ’
Mv" " _ 2AH x BH + AH® - 2AH x BH 4

' Fig..311 .  BH® = BH® + AHZ,

-
T——"\
\
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* 8q. upon AB = sq. upon BH + s8q. upon AH.
. h2 = 8.2 + b2' i
a. Original with authof, March, 1926,
b. See'Sci. Am, Sup., Vol. 70, p. 383, Dec.
10, 1910, fig. 17, in which Mr. Colburn makes use of

the tri. BAM.
c. Another proof by author, 1is obtained by

comparison and substitution of dissected parts as
numbered,

Iwo_Hundred Fourteen

D e D D e W e i e S

Case (4), (b).

In fig. 312, produce FG to P

making GP = BH, draw AP and BP.
\% '~ Sq. GH = b® = tri. BHA + quad.
,&,‘/ © _ ABFG = tri. APG + quad. ABFG = tri.

i 8 APB-+ tri, PFB = %¢® + £(b + a)(b -a).
pL bi = 3¢ + 3b% - La®. . c® = a2
+ b
Fig. 312 : & 8¢. upon AB = sq. upon HB

+ 8q. upon HA,
‘a. Proof 4, on p. 104, th "A Cérpanion of
‘Elementary School Mathematics," (1924) by F. C. Boon,
B A., Pub. by Longmans, Green and Cu.

o

G L Gy S W e e G T D s S S TS S - — -

In fig;~313, produce HB to F/
and complete the sq. AF. Draw GL
perp. to'AB, FM par. to AB and NH .

. .perp. to AB.
< X
Sq. AF = a2 = 4 £0 X HO
N~ 7 .
&Y + [L0% = (A0 - HO)3} = 240 x HO + A02
: ‘ - 2A0 x HO + HO® = A0® + HO? = (A0
Fig. 313 = AH® + AB)® + (HO = AH x HB + AB)?2 -
=AH4-:—AB2+AH2 ><HB2-AB2—AH2
(AH® + HB®) + AB®., . 1 = (AH® + BH?) + AB2, .vaB?
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& 8Q. upon AB = sq. upon HB + s8q. upoh HA.
&~ h% = a® + b2.., Q.E.D.
a. See Am. Math. Mo., Vol. VI, 1899, p. 69,
proof CIII; Dr. Leltzmann, p., 22, fig, 26, o
- b. The reader will observe that this proof
proves too much, as it first proves that AH® = AQ®
= . + HO2, which 1ls the truth sought, Triangles ABH and
AOH are similar, and what 1s true.,as to the relations
of the sides of tri. AHO must be true, by the law of

similarity, ‘as to fhe relations of the sides of the
tri. ABH. *

Case (6)} (a). This is a popular
flgure with authors.

“In fig. 314, draw CD and KD
. par. respectively to AH and BH, draw
; NNy ¢ | AD and BD, and draw AF perp. to CD
J \ :Kb * and BE perp. to KD extended.
e />F ' Sq. AK = 2 tri. CDA + 2 tri.
C'k.-_-_.....\lK BDK = CD x AF + KD x EB = CD® + KDZ,

s 8q. upon AB = sq upon BH
Fig. 31k + sq. upon AH, . h® = a? + p2, =

' .a. Original with the author,
August 4 1900

I!Q-ﬂ!ﬂitﬁé_§£!§n1§ﬁﬂ_

In fig., 315, extend AH- and
BH to E and F respectively making HE
= HB and HF = HA, and through H draw
LN perp. to AB, draw CM and KM par, Y
respectively to AH and BH, complete

L v / - the rect. FE and draw LA, LB, HC and S
E ‘ ) /o1y EE - | . ’

E | /lrgl \ ' 8q. AK = rect. BN + rect. AN

: | /// ‘\\l = paral. BM + paral. AM = (2 tri. HMK

| /7 ) g =2 trl. 1B < sq. BH) + (2 tri, HAL . !
, CK"‘N“""JK 2 tri., LAH = sq. AH). ‘ 1 |

Fig. 315
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. 8q. upon AB = sq. upon BH + sq. upon AH,
5% h® = a® + b2,
a. Original with author March 26, 1926,

9 p.m. )
Iug-_nnirgg_hght;s-
o H
;A\
g '
: ’ ! \ 7 I \
< } ey, e LS
N ’ /‘> \ff// //’éi
B \ ) i K
\F/ \E
Fig. 316 - Fig.lf317

In fig. 316, complete the sq's HF and AK; in
fig. 317 complete the sq's HF, AD and CG, and draw .
HC and DK. Sq. HF - 4 tri. ABH = sq. AK = h®, Again -
sq: HF - 4 tri, ABH = a® + b2, . h% = a? + b%, - '

*» 8q. upon AB = sq. upon BH + sg. upon AH.

. a, See Math, Mo., 1858, Dem. 9, Vol. I, p.

159, and credited to Rev. A. D. Wheeler of Brunswick,
Me., in work of Henry Boad, London, 1733. T

b. An algebraic proof: &% + b® + 2ab = h®
+.2ab, & h2 = a2 + b3,

c. Also, two equal squares of paper and scis-

e

sors,

In fig. 318, extend HB to N and complete the
'sq. HM, - , : ‘ :

X
. Sq. AK = sq. }m-l\t@-—e———@= (LA + AH)®

-2HB7<HA LA2+2LA><AH+AH2-2HB><HA.-BH2
+ AH2. , - 1

TURTARTEEORT R R AT R T

&)
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*» 8¢q. upon AB = sq.
upon BH + sq. upon AH,
a. Credited to T. P.

Stowell, .of Rochester, N.Y,.

“See' The Math., Magazine, Vol. I,
» 1882, p. 38; Olney's Geom., |

:> Part III, 1872, p. 251, T7th ‘ |
) s N method; Jour. of Ed'n, Vol.
}§¢ _____ 17 XXvIi, 1877, p. 21, fig. IX;
\ s K also Vol. XXVII, 1888, p. 327,
\Jﬂ/' ‘ 18th proof, by R. E. Binford,
Independence, Texas; The

" Fig. 318 School. Visitor, Vol. IX, 1888,

_ , p:. 5, proof II; Edwards' Geom.,
1895, p. 159, fig. (27); Am, Math, Mo., Vol. VI,
1899, p. 7O, proof XCIV; Heath's Math. Monographs,
No. 1, 1900, p. 23, proof VIII; Sci. Am. Sup., Vol.
70, p. 359, fig. 4, 1910; Henry Boad's work, London, .
1733 - | -

: .b. For algebraic solutions, see p. 2, in a
pamphlet by Artemus Martin of Washington, D.C., Aug.
1912, entitled "On Rational Right-Angled Triangles";
and a solution by A. R. Colburn, in Sci. Am. Supple-
ment, Vol. 70, p. 359, Dec. 3, 1910. -

) ¢c. By drawing the line AK, and considering
the part of the figure to the
right of said line AK, we have

£ the figure from which the
‘//”\ proof known as Garfield's So-
‘ \\ '1ution/follows--éee proof Two

e
\;

gf
/y .

\ » Hundred Thirty-One, fig. 330.
\ 7D ’ , ‘
. Iwo Hundred_ Twenty

yd i \ R _

&’ - AN 7 S
o - |\ In fig. 319, extend
\, } ’ /ﬁ HA to L and complete the sq.

| J_“__ﬁ}/' LN, ,
\\\ '///"{ Sq. AK = sq. LN
) HB x HA _ ‘ 2
\v g - b x == (HB + HA)

Fig. 319 - 2HB X HA = HB® + 2HB * HA
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+ HA® - 2HB x HA = sq. HB + sq. HA. . 'sq. upon AB
= sq. upon BH + sq. upon AH. « h2% = a2 + b2,

a. See Jury Wipper, 1880, p. 35, fig. 32, as.
given in "Hubert's Rudimenta Algebrae," Wurceb, 1762;
Versluys, p. 70, fig. 75. y

b. This fig, 319 1is but e variation of fig. -
240, .as also 1s'the proof.

s o e ot Fe e . A P e W e s P wve o G e S v e
.

Caée 6), ().

*  In fig. 320, complete the
sq. AK overlepping the tri. ABH,
draw through H the line LM perp. to

“AB, extend BH to N meking BN = AH,
and draw KN perp. to BN, and CO
perp. to AH.  Then, by the paral-
lelogram theorem, Case (1), (b),

' fig. 308, sq. AK = paral. KM
+ pgral. CM = {BH x XN = az) f)(AH'X co f‘bz) = a2
+ b-,

» 8q. upon AB = sq. upon BH + sq. upon AH.
a. See Math. Teacher, Vol. 4,'p. 45, 1911,
where the proof is credited to Arthur I, Colburn.
b. See fig. 324; which is more fundamental,
“proof No. 221 or proof No. 2259 - .
c. See.fig. 114 and fig. 328. .

-

In fig. 321, draw CL perp.
to AH, produce BH to N making BN
= CL, and draw KN and CH. -Since CL
'= AH and KN = BH, then % sq. BC -
= tri, KBH + tri. AHC = % BH® + am®
or th?® = 1a® + 1b%. . h® = a® + b2,
L . * 8q. upon AB = sq. upon HB
E + s8q. upon HA.-
Fig. 321 : a. Proof 5, on p. 104, in

-

R TIE L4 St b M R
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"A Companion to Elementary Mathematics" (1924) by
F. C. Boon, A.B., and credited to the late F C. Jack-
son ("S1ide Rule Jackson").

ng Hundred Twont1~Three s

- Lo v e o e S e S o e e s S i oe o e e e e D 2

In fig. 322, draw CI, and XL

+ AH x NH = BH® + AHZ,
* 8q. upon AB = sq. upon BH
+ sq. upon AH. . h® = a2 + b2,

‘ a. This is known as Haynes!

Fig. 322 Solution. See the Math. Magazine, ..
Vol. I, p. 60, 1882; also said to
have been dlscovered in 1877 by Geo. M. Phillips, Ph.
Ph.D., Prin. of the West Chester State Normal School,
Pa.; see Heath's Math. Monographs, No. 2, p. 38,
proof XXVI; Fourrey, p. 76.
b. An algebraic proof is easily obtained.

‘ AL par. to AH and BH respectively, and
e N through H draw LM.
(1£p " - Sq. AK = rect. KM + rect. CM
™\~ ‘:“%R = paral. KH + paral. CH = BH x NL
]
!

o - e

In fig. 323, construct sq,
AK. Extend AH to G making HG = HB;

on CK const. rt. tri.-CKL(= ABH)
and draw the perp. LHM, and extend
‘LK to G,

Now' LG = HA, and it is obvi-
ous that: sq AK (— h®) = rect. MK
+ rect. MC = paral. HK + paral ‘HC

= HB x HG + HA x CL = b® + a®, or
o h2 = a® + 2. Q.E.D.
Fig. 323 . sq. upon AB = sq. uﬁon HB
g S ’ + sq. upon HA.
- a. This fig. (and proof) was devised by Gus-
‘ tav Cass, a pupil in the Junior-Senior High School,

ST RN RITRALET T TR R
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* South Bend, Ind., and sent to the author, by his
~ teacher, Wilson Thornton, May 16, 1939,

Iug-ﬂunizgé-luentxzfixg

T

Case\(6), ().

/ ﬁ""“"‘#’ For convenience designate
, AN 7~ I the upper part of fig. 324, i.e., )
' e ‘ the sq. AK, as fig. 324a, and the
| | .lower part as 32k, | |
| R ‘ In fig. 324a, the con-
| A struction is evident, fér 32ib is
. Figf32M1 . made fnpm the dissected parts of
- ‘ ' 324a. GH' 1s a sq. each side of
G which = AH, IB' is a sq., each
H r](':"‘ T F side of which = BH. -
INTTN, | Sq. AK = 2 tri. ABH + 2
*' N | N\ ' tri. ABH + sq. MH = rect. B'N
m‘...ji\la_ \BJH‘ -+ rect. OF + sq. IM = sq. B'L
‘ - + sq. A'F,
’ , Fig. 32 ° . 8Q. upon AB = sq. upon -

BH + sq. upon AH. . h® = a2 + p2
a.-See Hopkins' Plane Geom., 1891, p. 91,
fig. V; Am. Math. Mo., Vol. VI, 1899, p. 69, XCI;

. Beman and Smith's New Plané Geom., 1899, p. 104, rig.
3; Heath's Math, Monographs, No. 1, 1900; p. 20, .
proof IV. Also Mr. Bodo M. DeBeck, of Cincinnati,
0., about 1905 without knowledge of- any previous so-
lutlion discovered above fordi of figure and devised a
proof from 1t. Also Versluys, p. 31, fig. 29; and
"Curiosities of Geometriques, Fourrey, p. 83, fig. b,
and p. 8%, fig. d, by Sanvens, 1753, .

. b. History relates that the Hindu Mathema-
tician Bhaskara, born 1114 A.D., discovered the above
Proof and followed the figure with the single word
"Behold," not condescending to give other than the B}
figure and this one word for proof. And history '

: ‘ furthermore declares that the Geometers of Hindustan o

' ~ knew the truth and proof of this theorem centuries

before the time of Pythagoras--may he not have learned

about it while studying Indian lore at Babylon?

S PN IRTETEO R AT T
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Whether he gave fig. 324b as wéll as fig.
324a, as I am of the opinion he did, many late authors
think not;.with the -two figures, 324%a and 324b, side
by side, the word "Behold!" may be justified, espe-

. ¢lally when we recall that the tendency of that age

was to keep secret the diséovery of truth for certain

purposés and from certain classes; but with the fig.

324b omitted, the act 1is hardly defensible--not any

'more so than "See?" would be after fig. 318.

Again, authors who give 324a and "Behold!"

. fall to tell thelr readers whether Bhaskara's proof

' was geometric or algebraic. Why this silence on so

- essential a point? For, if algebraic, the fig. 324a

! 1s enough as the next two proofs show. I now quote

" from Beman and Smith: "The inside square is evident-
1y (b --a)®, and each of the four triangles is %ab;

"o~ h® -4 xiab = (b - a)?, whence h® = a® + p2, "

It is conjectured that Pythagoras had discov-
ered it indeperdently, as also did Wallis, -an English
Mathematician, in the 17th century, and so reportéd;

AT

also Miss Coolidge, the blind girl, a few years ago:
see proof Thirty-Two, fig. 133.

Two _Hyndred Twenty-$ix

In fig. 325, it 1is ob-
vious that tri's 7 + 8 = rect.
GL. Then it s easily seen,
from congruent parts, that:
sq: upon AB = sq. upon BH + sq.
upon AH., . h? = a® + b=,

‘a. Devised by R. A.
Bell, Cleveland, 0., July 4,
1918, He submitted three more
of same type. ‘

In fig. 326, FG' = FH' = AB = h, DG' = EF .
FN = OH' = BH = a, and DM' = EH' = G'N = FO = AH. ‘.

\ = b. .




.
——

GEOMETRIC PROOFS 229

Then are tri's
FGD, G'FN = FH'E and )
H'FO each equal to FG'D

= tri, ABH, .
Now 4 tri., FG'D

+ sq. G'H' = sq. EN
+ sq. DO = a® + b2,

But 4 tri. FG'D + sq. ,
G'H' = 4 tri. ABH + sq. °

GH = sq. AK = h®, s h?
a® + b2, sq. upon AB = sq. upon BH + sq. upon
a. Devised by author, Jan. 5, 1934, ’

b. See Versluys, p. 69, fig. 73.

Iwo Huyndred Twenty-Ejght

~ Draw AL-and BL par.
resp'ly to BH and AH, and com-
iplete the sq. LN. ABKC = h®
= (b + a)? = 2ab; but ABKC
= (b - a)® + 2ab, — |
5 2h® = 2a® + 2b3,
2 - a2 + p2, . Sq. upon
sq. upon BH + sq. upon’

a. See Versluys, p.
72, fig. 78, attributed to
Saunderson (1682-1739), and

. came probably from the Hindu
Mathematician Bhaskara.

Iwo Hyndred Twenty-Nine
N “"“‘4% ~ _In fig. 328, draw CN par. to
| \ k//{ | BH, KM par. to AH, and extend BH to _
L MO\ ! L. ,HB x .
’ ' Sq.AK=4—2——Hjé-+sq.NH{
A = 2HB x HA + (AH - BH)® = 2HB x HA
Fig. 328 + HA® - 2HB x HA + HB® = HB? + HAZ,
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~ 8q. upou AB = sq. upon BH + sq. upon AH.

a. See Olney's Geom., Part III, 1872, p. 250,
1st method; Jour. of Ed'n, Vol, XXV, 1887, p. 404,
fig. IV, and also fig. VI; Jour., of Ed'n, Vol. XXVII,
1888, p. 327, 20th proof, by R. E, Binford, of Inde-
pendence, Texas; Edwards' Geom., 1895, p. 155, fig.
(3); Am, Math., Mo., Vol., VI, 1899, p. 69, proof XCII;
Sci. Am., Sup., Vol. 70, p 359, Dec. 3, 1910, fig. 1;
Versluys, p. 68, fig. 72; Dr. Leitzmann's work, 1930,
p. 22, fig., 26; Fourrey, p. 22, fig. a, as given by
Bhaskara 12th century A.D, in Vija Ganita. For an,
algebraic proof see fig. 32, proof No. 34, under AI-
gebraic Proofs, ’

b. A study of the many proofs by Arthur-R.
Colburn, LL.M., of Dist., of Columbia Bar, establishes
the thesis, so coften reiterated in this work, that
figures may take any form and position so long as
they 1nclude triangles whose sides bear a rational
algebraic relatton to the 8ides of the given trilangle,
or whose dissected areas are so related, through
equivalency that h® = a® + b® results.

(B)=~Proofs based upon a trianéle through the calcu-~
lattons and comparisons of equivalent areas.

Iwo Hundred Thjirty

Draw HC perp. to AB., The

,H three tri*s ABH, BHC and HAC are sinm-
t”‘ ilar, ! :
A 7’ We have_ three sim. tri's

erected upon the three sides of tri.
.3&3.529 ABH whose hypotenuses are the three
sldes of tri. "ABH,
Now since the area of tri. CBH + area of tri.
CHA = area of trl..ABH, and since the areas of three
sim. tri's are to each other as the squares cof their
corresponding sidés, (in this case the three hypote-
nuses ), therefore the area of each tri. i1s to the sq. -
of its hypotenuse as the areas of the other two trl's
are to Qhe sq's of.their hypotenuses., - -
- )

L4
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Now each sq. is = to the tri. on whose hypote-.

nuse it is erected taken a certain numbsr of times,
thls number being the same for all three. Therefore
since the hypotenuses on which these sq's are erect-
ed are the sides of the tri. ABH, and since the sum
of tri's erected gn the legs 1s = to the tri. erected
on the hypotenuse. . the sum of the sg's erected on
the legs =gthe sq. erected on the hypotenuse, .~ h?
= a® + b®, Q.E.D. | 4

.a. Original, oy Stanley Jashemski, age 19, of
Youngstown, 0., June 4, 1934, a young man of ‘superior
intellect. .

b. Ifm+n=pandm:n:p-= a? ?2 : h2,

thenm+n : a® + b® = n : b2 = p : 1n2,

m+n a® + bZ ~ a2 + p? -
o’o' = ’ O I' 1 = m—m—mm . l" h
p h?® h?®

= a® + b®, This algebralc proof given by E. S, Loom-
is. .

e - e T W oup v ahoe wrie Ay fom o sha o sl

In fig. 330, extend HB to
H "+ D zaklng BD = AH, through D draw
. DC par., to AH and equal to BH, and
] draw CB and CA. ‘
, " Area of trgp. CDHA = area
AN i M\ of ACB + 2 area of ABH.
| ié s L(8H + CD)HD = 24B% + 2
| 7% x 3AH x HB or (AH + HB)2 = ABZ.
o + 2&H x HB, whence AB® = BH? + ANZ
s 8q. upon AB = 3¢. upon

Fig. 330 BH + sq. upon AH., .~ h® = a2 ¢ b7,

‘ a. This 1s the "Garfield
Demonstration,”--hit upen by the Gene"al in a mathe-
matical discussion.with other M.C.'s about 1876. See
Jour. of Ed'n, Vol. III, 1876, p. 161; The Math. Mag-
azine, Vol. I, 1882, p. 7:; The School Visitor. Vol.

1888, p. 5, proof III; Hookins' Plane Geom., 1891,
p 91 fig. VII; Edwards' Geom., 1895; p. 156, fig.
(11); Heath's Vgth Monographs, Ne., 1, 19C0, p. 25,

%
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~

proof X; Fourrey, p. 95; School Visitor, Vol. 20, p.
1673 Dr. Leitzmann, p. 23, fig. 28&,.and also fig.
28b for a variation. .

b. For extension of any triangle, see V, Jel-
inek, Casopis, 28 (1899) 79--; Fschr. Math. (1899)
456, : ,

c. See No. 219, fig. 318, . -,

- o Lo e won S e v e W s > s s e 0 s S g, e

By geometry, (see Wentworth's

- H Revised Bd'n; 1895, p. 161, Prop'n
4£:I:j§§§& XIX), we have AH® + HB® = 2HM® + 2&MZ
A B But in a rt. trl. HM = AM. 86 b2

. 2
+ a% = 24M% + 2AM% = 4AM® = 4(%?)

Fig. 331
e = AB® = h®, . n® = a® + bZ. g
a. See Versluys, p:, 89, fig. 100, as given by
" Kruger, 1746. : ., \
Two . uundrg hirty-Three
_ Given rt. tri. ABH. Extend
.A' BH to A' making HA' = HA. Drop A'D
AN perp. to AB intersecting AH at C.
’lﬁ;x- Draw AA' and CB.

Since angle ACD = angle HCA',
then -angle CA'H = angle BAH. There-
fore tri's CHA’and BHA are equal.

.Therefore HC = HB.
Quad. ACBA‘ = (tri CAA!

Flg. 332~ _ oy, CAB) * ‘tri. BHC + CHA’ = hi%@l
h(DB) _h(AD + BD) _ 2, .2 2
+ 5 > 2 2 -+ 2 . & h® = a + b .

a. See Dr. W. Leitzmann's work, p. 23, fig
27, 1930 5rd edition, credited to C. Hawkins, of B
Eng., who discovered it in 1909. ’ ’
. b. See 1its algebraic proof Fifty, fig. 48.

" The above proof is truly algebraic through equal
areas. ,The author. _ “
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Let C, D and E be the cen- : 3
ters of the sq's on AB, BH and HA. |
Then angle BHD = 45°, ‘also angle

EHA.- . 1line ED through H 1s a st.
line. Since angle AHB = apgle BCA

~ the quad. 1is inscriptible in a cir- .
e . cle whose center is the middle pt.
* of AB,' the angle CHB = angle BHD
vig. 333% T = 45°- . oH is par. to BD. " . an- .

gle CHD = angle HDB = 90°. Draw
AG and BF perp. to CH, Since tri's AGC and CFB are
congruent, CG = FB = DB and HG = AG = AE, then CH
= EA + BD, o

Now area of ACBH = %?(AG + FB) = %? x ED
t o o = area of ABDE. From each take away tri. ABH, we get .
y ’ - tri., ACB = tri, BHD + trii HEA. 4 times this eq(%
gives sq. upon AB < sq upon HB + sq.- upon HA. . h®
= a + b%, -
_. a. See Fourrey, p. 78, as given by M. Piton- -
Bressant; Versluys, -p. .90, fig. 103, taken from Van -
( Piton—Bressant, per Fourrey, 1907.

b. See algebraic proof No. 67, fig. 66.

- ' Fig. 333 apd 334 are same
3 ‘ . . in outline. Draw HF perp. to AB,
and draw DC, DF ahd FC. As in
proofy, fig. 333, HC is a st. line
par. to BD. Ther tri. BDH = tri.

\ N\ %" BDC. ---(1) " As quad’ HFED is in. " /
, , ) ] Scriptible in a circle whose centgr
. ) S K 1s the cehter 'of HB, then angle BFD -
‘ Fig. 33k = anglé DFH = 45° = angle ¥BC. - FD

is par. to CB, whence tri. BCD -’
= tri, BCF. ---(2).
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'Winchester, N.H.
1888, .p. 17, 28t proof; Heath's Math. Monographs,

234- THE PYTHAGOREAN PROPOSITION

In like manner tri.

s tri., BCF = tri. BDH.
ACF = tri. AHE. . tFi. ACB = tri. BDH + tri. HEA,
=== (3. 4 x (3) gives 5q. upon AB sq. upon HB

+ 8q. upon HA. . h? = a2 + b? -

“a. See Fourrey, p. 79, as given by M. Piton-
Bressant of Vitteneuve- Saint Georges, also Versluys,
p. 91 fig. 104,

_b. See algcbraic proof No. 66,.fig.’67.

P h ¢ Iwe Hundred Th;rtx-Siy

e et e et aenmeed -

' ~ - . In fig. 335, extend BH to F
A making HF = AH, erect AG perp. to AB
making AG = AB, draw GE par. to HB®®
N\ and GD par.- to AB. Since tri's ABH
and GDF are 'similar, GD = h{(l - a/b),
and FD = a (1 - 'a/b). '
Area of fig. ABEG = area ABH
+ area AHPFG = area ABDG + area GDF.
. 2ab + 3b[b + (b - a)] = ih[h + h
(1 - a/b)] + 2&(b - a)(l:- a/v),
Whence h® = a + b? -~ 8q. upon AB = 8q.
upon BH + sq. upon AH. -
‘, a. This proof is due to J. G Thompson, of
see Jour.. of Ed'n,- Vol. XXVIII,

Fig. 335

No. 2, p. 34, prpof XXIIT; Versluys, p. 78, fig. 87,

by Rupert, 1900‘
b." As there are possible several figures of

above type, 1r/ each of which there will wresult two

- similar trda gles, there are possible many different
'proofs, differing only: in shape of figure
‘proof ls one from the many

The next

PRty

In fig. 336 produce HB to F makinguHF = HA,

+

through A draw AC perp. to AB making AC = AB, draw S

CF, "AG par.” to HB, BE par. to AH, and BD perp. to AB.

PO
e
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" Since tri's ABH and BDF are similar,
. we find that DF = a(l - a/b) and BD

= h(1 - a/b).
1§1> Area of trap. CFHA = 2 area
\éb// F ABH + area trap. AGFB = area ABH
+ area trap. ACDB + area BDF. _
ﬂ ,/Zf ‘ _ Whence area ACG + area AGFB
cv” - "= area ACDB + area BDF or 3ab

+

sb[b + (b - a)] = ih[h + h(1 - a/b)]
+ %a(b - a)(1 - a/b).

This equation is ‘equation (1) in the preced-
ing solution, as it ought to be, since, if we draw .
BE par. to AH and consider only the figure below the
- line AB, calling the tri. ACG the given triangle, ve.
have identically fig. 335, above.

. 8G.. upon AB = sq. upon BH + sq. upon AH.
» h% = a® + b2, o

a. Original with the author, August, 1900.
See also Jour. of Ed'n, Vol. XXVIII, 1888, p. 17,

28th proof, - ‘ . ) %

) F%g.356

"In fig. 337, extend

HB to N making. HN‘ AB, draw
KN, KH and BG, exténd GA to M
and draw‘BL par. t@ AH.. Tri.
KBA + tri ABH = guad. BHAK

(tri. HAK = tri. GAB)
t,(tri DGB = tri. HKB)

= glad. ABDG tri. HBD + tri.

/%7 GAH + tri. ABH, whence tri.
57 T BAK = tFll HBD + tri. GAH.- - .
Kv, ’ . ;5 sq. upon AB = sq.
el .~ upon B + sq. upon AH. - h® .
v TFig. 357, = a® + b2 Lo

;, a. See Jury Wipper,
1880, p 33; fig. 30, as found ‘in the wqrks of Joh.
J. I. Hoffmann, Mayence, 1821; Fourrey, p. 75.

‘\

N %r g we ! anig ob B
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‘ - In rig. 338, constructthe
Y3 three equilateral triangles upé\rﬁﬂie'
» \\\“c\ H_ :9 three sides of the-given triangle
: N>, /. ABH, and draw .EB and FH, draw EG'

’
"’B

\
\
perp. to AH, and draw GB,
y.

Since EG and HB are parallel,

\ / tri. EBH = tri. BEG = 4*tri, ‘ABH,.
0y, & tri. GBH = tri. HEG, -
“ooa (1) Tri. HAP = tri. EAB
’ v = tri. EAK + (tri. BGA = % tri. ABH)
Fig. 338 + “(trt, BKG = tri. EKH) = tri EAH
{ + 4 tri, . ABH, -

t : (2) In like manner, tri. BHF = tri DHB + 35
tri, ABH. (1) + (2) = (3) (tri. HAF + tri. BHF = tpi,
BAF + tri. ABH) = tri. EAH + tri. DHB + tri, ABH,
whence tri, FBA = tri, EAH + tri. DHB. .

But since areas of similar surfaces are to

‘ each other as the squares of their like dimensions,
.we have

/" tri, FBA : tri. DHB r tri. EAH = AB® : BH®

-D - , : AH®?, whence tri, FBA : tri.

// S » DHB + tri. EAH = AB® : BH?2

) + AH?, But tri. FBA = tri,
- ,:4 DAH + tri. EAH. . AB? = BHZ

- + AHZ,

» 8q. upon AB = sq.
upon HD + sq. upon HA.

’ a.” Devised by the
I . author Sept. 18, 1900, for
\ by . similar regular polygons
A ' -~ other than squares.

-

. | \I‘II ‘ o I\n fig. 339; from the .~
g \#E middle points of AB, BH-and
‘ o HA draw the three perp's FE,
GC and XD, making FE = 2AB,
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GC = 2BH and KD = 2HA, complete the three isosceles
tri's EBA, CHB ‘and DAH, and draw EH, BK and DB.
Siné? thése tri's are respectively equal to
the three sq S upon AB, BH and HA, it remains to ,
'prove tri. EBA = tri;, CHB + tri,'DAH. The proof 1is .
+  same’ as that.in fig 338 hence proof for 339 is a
variation of proof for 338.
a.. Devised by the author, because of the fig-
. ure, S0 as to get' area of tri. EBA = ABZ, etc. AB?
= BH® + AH®, ‘ ‘ v
% osa. upon AB sq.‘upon BH + sq. 'upon AH.
~ h® = a® + b2, .
i . . b. This proof is given by. Joh Hoffmann; see
' ‘his solution in Wipper's Pythagoraische Lehrsatz,
1880, pp. 45-48.
o T See, also, Beman and Smith's New Plane and
" . Solid Geometry, 1899, p. 105, ex. 207, Versluys,.p. \
59, fig..63. =
¢, Since any polygon of three, four, five,
or more sides, regular or irregular, can be trans-
_formed, (see Beman and Smith, p. 109), into an equiv-
.alent triangle, and 1t into an equivalent isosceles
triangle whose base 1s the assumed base of the poly-
gon, then 1s the sum of the areas of two. such similar ’
. polygons, or semicirgles, etc., constructed ‘upon the S
two legs of any right triangle equal to the area of
. . a similar "polygon constructed upon the hypotenuse of
’ said right triangle, 1f the sum of the .two isosceles
triangles so. constructed (be their altitudes what
they may), 1s eqnal 'to the area of .the similar isosce-
les triangle constructed upon.the hypotenuse of the
assumed trlangle. Also see Dr. Leitzmann, (1950,,
p. 37, fig. 36 for semicircles,
‘ d. See proof Two Hundred FortI-One for the
establishment of above hypothesis

S Let tri's ‘CBA, DHB and EAH be similar isos- ' \\
celes tri's upon the bases AB, BH\andléH of the rt.

Ao
b

] e
ot
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AN

. tri. ABH, and CF, DG and EK thelr
altitudes from thelr vertices C,
D and E, and L, M and N the mid-
dle points of these altitudes.

Transform the tri's DHB,
EAH and CBA into thelr respective
-paral's BRTH, AHUW and OQBA.

Prgduce RT and WU to-X,

J w and draw XHY. Through A and B
~ ) draw A'AC' and- ZBB! par. to xy.' - - - \
Through H draw HD' par. to 0Q
\:' and complete the paral. HF', Draw .
\*: _ . XD' and E'Z. Tri's E'YZ and XHD
\ ' are congruent, since YZ = HD' and
. Fig. 3b0 respective angles are equal. . EY
, = XH, -Draw E'G' par. to BQ, and-
paral. E'G'QB = paral E'YZB = paral. XHD'F; also T
) paral. HBRT = paral. HBB’X But paral. HBB'X 1is \
- - same as paral. XHBB' which = paral. XHD'F' = paral,
E'YZB. ‘ b . - . o
paral E| QB = tri? DHB; in like manner }
paral AOG'E' = tri.' EAH. As paral. AA'ZB = paral.
AOQB = tri. CBA so tri. CBA'= trl. DHB + tri, EAH.
N . . _--(]ﬁ,g -
A ot . Since tri. CBA : tri. DHB : tr{. EAH = h®: a®
A o : b2, trl. CBA: tri., DHB + tri. EAH = : a? b2
‘ But tri. CAB = tri. DHB + tri. EAH. _f;(l). ”-hz
= az\+'b2. ‘ T

. - - & 8Q. upon AB = sq. upon BH + Sq.' upon'A-H.'
; Q.E.D.. ‘

X a. Original with author. Formulated Oct.” 28;

1933, The .author has never seen,.nor read about, nor ' .
: ’ " heard of, a proof for h® = a? + b? based on 1sosceles

§ L . triangles having any altitude of“whose equal sldes

- : ——e are unrelated to a,‘b and h. Co :

N
1 . X "u

c Ty : : Iue_ﬁunirsd FQ'&&&I&Q

- ' Let X, Y and X be three similar pentagons on
sides h, a and b. ‘fhen, i1f.X = ¥ +.Z, -h® = a2 + b2,

'
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“ /
) Fig. 341 ' -
V Transform pentagon X, Y-and Z into equivalent
- tri's DQO; RGT- and UMW. Then, (by 4th proportional,
; Fig. a), transform sald tri's into equivalent isosce- AR
. les trils P'BA, S'HB and V'AH. \ S
» Then proceed as in fig. 340, - h2 = a% + b2 - . ]
~ 8q. uponr AB = sq. upon BH' + sq. upon. AH. Q.E.D. - o T 7
G ’ . Or using the similar tri's XBH, YHB and ZAH, !
_% proving tri. XAB = tri. YHB + tri. ZAH whence 5 tri.
& XBA = 5 tri. YHB + 5 tri, ZAH ete. .
1 P . — . E
i |
- . N
. ~ - ; '
[} ‘ ‘) = :
! ; v ‘ s’ ’
. Y ) ’
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By argument established under fig's 340 and
341, if regular polygons of any number of sides are
const'd-on the three sides of any rt. triangle, the
sum of the two lesser = the greater, whence always
h? = a® + b®, ) .
a. Devised by the author, Oct. 29, 1933.
‘b. In fig. a, 1-2 = HB; 2-3 = TR; 1-4 = GS;
4-5 = 8S'; 1-B = AH; 6-7 = WU; 1-8 = MV; 8-9 = VV';
1-10 = AB; 11-11 = 0Q; 1-12 = PD; 12-13 = P'P.

¢

\

- In fig. 342, produce AH to
E making HE = HB, produce BH to F
making HF = HA, draw RB perp. to AB
making BK = BA, KD. par. to AH, and
' draw EB, KH, KA, AD and AF BD = AB
and KD = HB. )
. Area.of tri. ABK = (area of
C tri. KHB = area of tri. EHB) + (area
Fig. 342 of tri. AHK = areaof tri. AHD)
. >~ + (area of ABH = area of ADF). “
: ~ area of ABK = area of tri. EHB + area of . g
tri. AHF % ‘sq. upon AB = sq. upon BH + sq. upon AH.

"\~ bZ = a? + b,

a. See Edwards' Geom., 1895, p. 158, fig. (20).

" Two_ ﬂ!QQFQQ-EQLil

B

: In fig 343, take AD = AH,

draw ED perp..to AB, and draw AE.

Tri. ABH and BED are similar, whence
TB'JDE = AH x BD + HB. ‘But DB = AB - AH.

' o Areg of tri‘ ABH = 1AH X' BH Lo
AD x ED

Fig.. 343 = 2 5 ~ED x DB Z AD X ED
, AHZ (AB - AH) | AH(NB AH)2
L x = 1 ; 2
'+ 3ED x DB = - = 1 H . BH
= 2AH x AB - 24H? + AB2 + AHZ - 2AH x AB. . ABZ
= BH® + AH® | “

gy
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-

4»sq. upon AB = s8q. upon.BH + sq. upon AH. ’
v h® = a? + p? ‘
. a. See Am Math. Mo. , Vol. VI, 1899, p. 70,
proof XCV
b. See proof Five, fig. 5, under I, Algebraic -
Proofs, for an algebraic proof, '

T"Q-ﬂuaéggi Forty-Five

3

In fig. 344; produce

\E BA to L making AL = AH, at L

{ o draw EL perp. to AB, and pro-

: \ ! duce BH to E. The tri'‘s ABH -

| \\ -- and EBL are similar.

, : S , . Area of tri. ABH = 1AH

! A . xBH = 4LE x LB - LE x LA

i T _ 1 AH(AH + AB)f,_ AH® (AH + AB), .
~ : N BH BH . :

! .

)

|

L

)

’

]

ol

\ '~ vwhence AB? = BH? + AHZ,
.- & 8@, upon AB = sq.. e .-

H upon BH t sq. upon AH. & h® .
- ) = a® g b : :
L. _—\? a. See Am. Math. Mo., .o

e .Vol. VI, 1899, p. 70, proof

" b. This and the preced- o
) _ . ing proof are the converse of each other. The two
proofs teach that 1f two triangles are similar and sc j
- .- related that the ared of either triangie may be ex- ' L
v pressed principally .in terms of the sides of the. - . ——
‘ . other, then either triangle ‘may be taken- ‘as the prin- i
‘ ; clpal triangle, giving, of.course, as many solutions L e o
as it 1s possitle to express the area of ekther in ’ o '
terns -of the sides of the other.

' Iwo Hyndred Forty=Six

_ In fig. 345, produce HA and HB and describe
the arc of a circle tang. to HX, AB and HY. From O, .

T
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its center, draw to

points of tangency, 0G,

OE and 0D, and draw OH.
Area of sq. DG .

o = r% = Lab +"(2§E7§_£
-7 AR x p X

N o+ 2-“Err—)=;§ab + hr,

NteT Ey But since 2r = h + a + b,
. ) A “r=%Mh+a+b)

Fig. %45 t(h + a +b)% = Lab

+ h(h + a + b), whence hZ®
= a® + p?

u 8q., upon AB = sq. upon BH + sq. upon AH. A
- s~ h% = a® + b¥ ) T
a. This proof 1is original with Prof. B. F.
stney, ‘Wooster Universlcy, 0. See Am. Math. Mo.,
Vol. VI, 1899, p. 70, XCVII.

In fig. 346, let AE

= BH. Since the area of a
circle is nr®, if it’can be
proven that the circle whose
radius 1s AB = the<circle
° whose radius AH + the circle
whose radius is AE,.the truth
sought 1s established.

< It 1s evident _if the

v e " triangTeABH Tevolves in the
plane of’ the paper about A as™’ ’
o a center, that the area of 0!
Fig.3h6 the circle generated by AB :
e o ' -~ will equal ‘the aréa of-the
T clrcle generated by AH plus the area of ‘the annulus ,
. \\\ generated by HF. . .
: -y Hence 1t must bée shown, 1f possible, that the -
\} area of the annulus {s equal to the area of” the cir-
\‘_; ‘cle whose radius is AE,
| N -
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(N

: Let AB = h = AF, AH = b, BH = 2, AD = $BH = », HK | |
_\‘\" . v -+ :
&fw{ = KF, and AK = mr, whence GH h + b, AK = b 5 b==mr,
& . HF=h -D, HK = K" = 2 A L3S ' *
oF ' . ~ Now (GH=h+D): (B = 2r) = (BH = &r)
i : (P = h - b). ---(1) . -
= ’ “ ] h + 1
i; & whence h =yvh% + 4r2 eand b =x/h° - 4?0 ; 2
« ., 2 4 2, -1 + b
I . =\ L gr '% p = mr, wience b = r(m - 5), and i 5
b . e ’
= ch *k pea LS mr, whence h = r{m + -‘1"). . 2l
N - &2 ' m -2
1 i} A .
r (m +z) -rm- %) e - o
= 5 = = = HK, Nov since (AD = r) i

: (AK = mr) = (mc:i) : (AD = 1), ---(2)
) : 4 AD : AK = HF : AE, or 2mAD : 21AK = HF : AR,
-~ 20AK x HF = 2mAD x AE, or on (& Z D)H = MAE % AR, °© 1

But ﬁhe area of the annulus equal % the sum
of the circumferences where radii sre h and b times
. the wldth of the ennulus or HF, .
{ . the srea of the annulus HF = the ‘area of
*he circle vhere radius is HB.
. « the area of the circle With rndiuq AB = the
area of the clrcle with radlus AH + area of the an-
nulus. - . i
n mh? = wa® + b2,
% 5¢. upon AB = sqg. upon BH + ag. upon AH,
5% h® = a2 + p®
a. See Am, Math. Mo‘, Vol. I, 1894, p. 223,
the proof by Andrew ¢ngraham, President of the 3wain
Free School, New Bedford, Mass. \
. b. This proof, like that of proof Two Hundred =~ °
Fifbcen, fig. 313 proves to¢ much, since both equa-- T
tions (1) and (2 imply the truth sought. The author, -
. Professor ngraham, does not ,show his readers how he

¥

3
%

determined that HX = i , hence.the implication is
v hidden; in (1) we have directly h® - b® = (4r? = a%). :

-
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Having begged the question in both equations,
(1) and (2), Professor Ingrghem has, no doubt, un-
consciously, fallen under the formal fallacy of
petitio principii. [ o
" ¢. From the preceding array of proofs it is

. evident that the algebraic and geometric proofs of
- this most important truth are as unlimited in ntmber
as are the ingenious resources and ideas of the mathe-

matical investigator.

“

NO TRIGONOMETRIC PRCOFS -~/ *~ i

Facing forward the thoughtful reader may
raise the question: Are there any proofs based upon’
the science of trigonometry or analytical geometry?

There are no trigonometric proofs, because’

" all the fundamental formulae of trigonometry are them-

selves based upon the truth of the Pythagocean Theo-
rem; because of this theorem we say sin®A- + cosZ®A
= 1, etc. Triginometry i § because the Pythagorean
Theorem Us. o [
Therefore the so-styled Trigonometric Prooff
given by J. Versluys, in his Book, Zes.en Negentig
Bewi jzen, 1914 (a collection -of 96 proofs), D. 9%,
proof 95, is not‘a proof since it employs the formula
sin®A + cos®A = 1. %
" As Descartes made tqe Pythagorean theorem the
basis of his method of analjtical geometry, no inde-
pendent proof can here appear. AnalyticalfGeometry
is Euclidian Geometry treated algebralcally and hernce

" involves all principles already established.

Therefore in analytical geometry all rela-

‘tions concerning. the sides of a right-angled triangle

imply or rest directly upon the Pythagorean theorem
as 1s shown in the equation, viz., xZ + y r?

And The Calculus being but an algebraic in-
vestigation of geometric variables'by the method. of
limits it accepts the truth of geometry as estab-
lished, and therefore furnishes no new proof, other
than that, if squares be constructed upon the three

N
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_sldes of a variable oblique triangle, as any angle of

the' three approaches a right angle the square on the
side opposite approaches in area the su% of the
squares- ﬁpon’the other two sides.

. But not soc with quaternions, or vector analy-
sis, It is a mathematical science which introduces
a new.concept inot employed in any of the mathematical
sclences méntioned heretofore,--Ehe concept of direc-
tion. ) . ' ,
And by means of this new concept the complex

demonstrations of old truths are wonderfully simpli-

fied, or new ways of reaching the same truth are de-
veloped.

x o

©

™

N \
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] III. QUATERNIONIC PROCFS
) ¢

i - We here give four quaternionic proofs of the
Pythagorean Proposition. Other proofs are possible.

e Qne
- ' » . In fig. 347 designate the
— sides as to distance and direction by
’ a, b and g (in place of the Greek al-
" A - pha o, beta B and gamma Yv). Now, by
R x : . . the principle of direction, a'=Db + g;
. . Fig. 347! also since the angle at H is a right
‘ ( ‘ ' angle, 2sbg = 0 (s signifies Scalar.
j, “See Hardy, 1881, p.'6). .
/] ()/a+b=g (1)2 (2) a? b2 + 2sbg + g%
(2)-reduced = (3). - a® = b2 + g2, considered as
}1engths h Sq. upon AB Sq. upon IH + sq. upon AH
~h® = a% + v®, Q.E.D. /
’ a. See Hardy's Elements of Quaternions, 1881,
’ p. 82, art., 5%, 1; also_Jour. of Education, Vol.

A ’ XXVII, 1888, p. 327, Twenty-Second Proof; Versluys,
- - p. 95, fig. 108,

ol ' . =" "Two

-

In fig. 348, extend BH to C

-

£ " making HC = HB and draw AC. As vec-
: ~ ) : SR AN tors AB = AH + HB, or A =B + G (1).
- ' R ‘ Also AC = AH + HC, or A =B - G (2).
PR ORI SURR TR i Squaring (1) and (2) and
T R ) '”.Af j -adding, we have A% + A% = 2B2 . 2G2.
: " Or as lengths, AB® + AC2 = 2a2 - .
Fig. 348 + 2AB%, But AB = AC. -
" AB® = AHZ + HB2,
= °2 sq. upon AB = 8q. upon AH.+ sq. upon HB. |
o h?,= a® + b2, - .o N N
] ’ 246
; —
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a. This is James A, Calderhead's solution.
See Am. Math. Mo., Vol. VI, 1899, p. 71, proof XCIX:
!

-5 Gt el s " .
H 4
A {
t -l

) (
' . In fig. 349, complete the rect.

: " HC and draw HC... As vecters.AB = AH
+ HB, or a = b + g (1) HC = HA + AC,

‘ ﬁ\ ' ’:B ora—-b reg (2). ..
- T e .- 8quaring (1) and (2) and add-
[ b\#’ ing, gives A% + A'2 = 2B®% + 2G%, Or
considered as lines, ABZ® + HC? = 2AH®
Fig. 349 . + 2HB®, But HC = AB.
. ABZ = AH® + HBZE
T il 4 8q._upon AB = sq. upon AH2 + sq. upon H52

“h? = a? & b2, ; -
a. Another .of °James A. Calderhead's. solutions _
. See Am. Math. Mo., Vol. VI, 1899, p. 71, proof C;

‘Versluys, p. 95, fig. 108. ' t

.... . : - . ‘

b, v N R ‘ 2 . . D .
Jaoe , . : : E.Qg.ﬁ , ‘ 7
- ’ H
I

In fig. 350, the con-
struction 1s evident, as an-- ‘
gle' GAK = —angle'BAK. The ra- '
dius being unity, LG and 1B
are sines of GAK and BAK.
As vectors, AB = AH
+ HB, or a=Db+g (1). Als6:
AG = AF + FG or a' ==b + g
(2). Squaring (1) and (2) ’ .
‘and adding glves . a +a'
= 2b% + 2g%. Or ‘considering
- the vectors as distances, AB®
Fig. 350 + AG2 = 2AH2 + 2HB®, or AB?‘
= AH® + HB2
.~ 8q. upon AB = sq. upon- AH + 8q. upon BH
~'h® = a2 + b2,
' a. Original with the author, August, 1900.
b. Other solutions from: th‘"trigonometric
right line function figure (see Schuyler's Trigonome- Ny
try, 1873, p. 78, art 85) are easily devised through ’
vector analysis, ‘ -

/.,.‘.‘...oﬂ"ﬂ
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IV. DYNAMIC PROOFS

The bClenoe of Dynamics, since 1910, 1s a

claimant for a place as to a few proofs of the Pytha-

gorean Theorem

A dynamic proof employing the principle of
moment of a couple appears as proof 96, on p. 95, in
J. Versluys' (191%) collection of proofs. ‘
It 1s as follow§:/ :

o

‘ ¢ one
In compliance with the

in mechanisc| (see "Mechanics
. for Beginners, Part I," 1891,

. by Rev. J. B. Locke, p. 105),
the moment of the sum of two
conjoined couples 1n ‘the same
flat plane is the same as the
sum of the moments of the two
couples, from which it follows
that h? = a® + b®.

If FH and AG represent
two equal powers they form a
- couple whereof the moment

equals FH X AH, or b?

If HE and DB represent two other equal powers
they form a couple whereof the moment equals DB x HB
or a®

To find the moment of the two couples' join

the two powers AG and HE, also the two powers DB and

FH. To join the powers AG and HE, take AM = HE, The
dtagonal AN of the parallelogram of the two powers AG
and AM is equal to CA. To joln the powers FH and DB,
take BO = DB. The diagonal BK of the parallelogram
of the two powers (FH = BP) and BO, is the second

248

theory of the moment of couple, .

) [}
-
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component of the resulteat couple whose moment 1is CH
x BK, or h?, Thus we have h? = a2 + b=,

a. See J. Versluys, p. 95, fig. 108. He
(Versluys) says: I found the above proof in 1877, by
' considering the method of the theory of the principle

of mechanics and to.the present (1914) I have never
met with a 1like .proof anywhere

_ In Selence, New Series, Oct. 7, 1910, Vol. 32,

pp. 863-4, Professor Edwin F. Northrup, Palmer Bhysi-
cal Laboratory, Princeton, N.dJ., through equilibrium .
of forces, establishes the formula h® = a® + bZ
In Vol. 33, p. 457, Mr. Mayo D. Hersey, of
] the U.S. Bureau of Standards, Washingtos, D.C., says
that, 1f we admlit Professor Northrup's proof, then
the same reésuif may be established by a much simpler
course of reasoning based on certain simple dynamic _
laws. '
" Then in Vol. 34, pp. 181-2, Mr. Alexander Mac-\
“Farlane, of Chatham, Ontario, Canada, comes to the
support of Professor Northrup, and then gives two
very fine dynamic proofs through the use of trigono-
ymetric functions and quaternionic* laws.
. Having obtained permission from the editor of
Sciehce, Mr. J. McK. Cattell, on February 18, 1926,
to make use of these proofs found in said volumes 32,
32;and 34, of-Science, they now follow. '

Two

In fig. 352, 0-p is a rod. "¢
without mass which can be revolved"
in the plane of the paper about’'0
as a center, 1-2 is another such "°°
rod in the plane of the paper of
which p 1s 1ts middle point. Con-
centrated at each end of the rod
1-2 are equal masses m and m'
each_distant r from p.

Let R equal the distance
0-p, X = 0-1, y = 0-2. When the-

}
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aystem revolves about 0 asta center, the point p will
have a linear velocity, r = ds/dt = da/dt = RW, where
ds 1s the element of the arc described 4in time dt, da
is the differential angle through which O0-p turns,
and W is the angular velocity.

1. Assume -the rod 1 2 free to turn on*"p“as a
center. ,.aince m at 1 and m' ‘at 2 are equal and equal- ' -
ly distant from p, p is the center of mass. Under -

these conditions E' = %(2m)V® = mR3W2, ---(1) »
2. Concelve rod, 1-2, to become rigorously.
attached at p. "Then as 0-p revolves about O with an- ra

gular velocity W, 1-2 also revolves about p with 1ike
angular velocity. By .making attachment at p rigid )
the system 1s forced ~fo—take on an additional kinetic
energy, which can be only that, which is a result of
the additional motion now possessed by m at 1 and by
m' at 2, in virtue of their rotation abdéut p as a
center. This added kinetic energy is E" =.1(om)r3w?2
=-mr?w2, ---(2) Hence total kinetic energy is E—="E* . -
+ E" = mWZ (R® + 1%). --(3) .

5.:With the attachment still. rigid at p, the
kinetic energy of m &t 1 1is, plainly, Eo = —mxewz. '
---(%) Likewise Ej = Zmy®w2. ---(5)

. the total kinetic gnergy must. be E = E . ~

24

+ Eg = %mwe(x + y2)., -==16)"

. (3) = (6) or 3 (x®* + y2) = R® + rén ---(7)

In (7) we have a geometric relation of some
interest, but in- a particular .case when x = y, that
is, when line 1-2 is perpendicular to line O- -p, we
have as a result x® = R® + r®; ... (8)

. 8q..upon hypotenuse = sum of squares upon «
the two legs of a right triangle.

Then in Vol. 33, p. 457, on March 24, 1911,

Mr. Mayo D Hersey says: '"while Mr. R. F. Deimal

. " holdsthat equation (7) above expresses a geometric
_fact--I am tempted to say 'accident'--which textbooks .

raise to-the dignity of a theorem." He further says:
"Why not let 1t be a simple one? For instance, if

‘the force F whose rectangular components$ are x and y, .
. acts upon a particle of mass m uhtil that v2 must be

D

<
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* positive; consequently, to hold that the square of a
simple vector is negative is to contradict the estab-
1ished Gonventfbns of. mathematical*analysis. . 3

_ ~ The quaternionist tries to get out by saying '
. that after all v is not a velocity having direction,
but merely a speed To this I reply that E = cos
fmvdv = 2mv , and that these expressiens v and dv are
- both vectors having directions which are different.
' Recently (in the Bulletin of the Quaternion
Association) I have been considering what may be |
called *the generalization of the Pytha-
gorean Theorem. ', St .
Let A,.B, C, D, etc.; fig. 353, -~
denote vectors having any direction in. ‘ : /
space;, and let R denote the vector from .
the origin of A to the terminal of the
last vector; then the generalization of-
‘the P,T. 15 R% = A% + B®'+ 0% + D2
+ 2(cos AB + cos AC + cos AD) +'2(cos BC
Fig. 353 + cos BD) + 2(cos OD) + etc., where cos
AB denotes the rectangle formed by A and
the progection of F parallel, tO(A The theorem of -P.
is limited to two vectors A and'B which are at right
angles to one' another, giving R® = A% + B®. The ex-
‘tension given in Euclid removes the condition of per-
pendicularity, giving R® = A% + B® + cos AB. -
Space geometry gives R® = A% + B % &2 when
A, B, C are othogonal, andRZ = A% + B2 + C2 + 2 cos
AB ¥+ 2 cos AC + 2 cos BC when that condition is re-
moved. SN
, Further, space-algebra ‘gives a complementary,
theorem, never dreamed of by elther Pythagoras or
) Euclid.

1
H

Let V denote in magnitude .and direction the
resultant of the directed areas enclosed between the
broken 1lines A + B + C + D and the resultant line R,

' and let sin AB denote in direction and magnitude the
area enclosed between A and the projection of B which
is perpendicular to A; then the complementary theorem -
1s 4V = 2(sin AB + sin AC + sin AD + ) + 2(sin BC
+ s8inBD + ) + 2(sin CD + ) + etc. ’

1y
. d
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THE FYTHAGOREAN GURIOSITY

, The fellowing is reported to have heen taken
- . ' from'a notebonk of Mr, Joan Waterhouse, un enginecs
of N, ¥ Tisy, Tt
-:8/ appeared in print,
in a~N.Y. -paper,
in July, 1899.
Upan the sides of/
- - the vight tri-
~. @ngle, fiz. 354,
construct the
aguares AL, BU,
and CE. Connect
the points E end ..,
H, I and M, and
N and . Upcn
these lines con- *
~.8truct the sguarés
EG, MK and NP,
and connegct the
: points~ P.and F, G
and K, and L and
0. The following .
truths ars demon-
A streble.

1, Sdﬁare

BN = sguere CE

+ square AI. (Bu-

‘ . . Glid;,

i _ 2. Triangle HAE = triangle IBM = triangle DCN
= triangle CAB, since HA = BI and EA = MY, EA = DC
and HA = N2, and HA = BA and YA = CA.,

, 3. Lines HI and GK sre perallel, for, since

angle GHI angle IBM, .. triangle HGI = triangls BMI,
whence IG = IM = IX. Again extend HI to H! making

~  IH' = IH, and draw H'K, whence triangle IHG = triangle ) y

TIH'K, each having two sides and the included angle s

r respectively equal. .. tbe distances from G and ¥ to

the line HH' are aqual . the lines HI and GK are

parallel. In iike manner it may be °nown that D& and

PF, also MH and LO, ere perallel.

>

Fig. 35k

]
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, 4, GK = 4HI, for HIF = TU = GT = UV = VK
(since VK is homologous to BI in the equal triangles
VKI and BIM). In like manner it can be shown that

=" 4DE. That LO = UMN is proven as follows: tri-
angles LWM and IVK are equal; therefore the homolo-
gous sides WM and VK are equal. Likewise OX and QD
are equal each being equal to MN. Now in tri, WJX,
MJ and XN = NJ; therefore M and N are the middle
points of WJ and XJ; therefore WX = 2MN; therefore

= 4MN,

_ 5 The three trapezoids HIGK, DEPF and MNLO
are each equal to 5 times the triangle CAB. The 5

, ‘

triangles composing the trapezoid HIGK are each equal ——

to the triangle CAB, each having the same base and

_.altitude as triangle CAB. In 1ike .janner it may be

shown that the- trapezoid DEPF, S0 also thé trapezojd

. MNLO, eéquals 5 times the triangle CAB,

6. The square MK + the square NP = 5 times
the square EG or BN, For the square on MI = the

+ AC2; and the square on ND + the square on NZ + the
square ZD = AB? + (2AC)2 = AB? + 4AC2. Therefore the
square MK + the square NP = 5aB% + 5AC2 = 5(AB% +AC?)
= 5BC® = 5 times the square BN. .

2 7. The bisedtorlof the angle A' passes through
the vertex A; for A'S = A'T,. But the bisector”of the
angle B' or C', does not pass through the vertex B,
or C. Otherwise BU would equal BU', whence NU" + U"M
would equal NM ¥ U"M'; that 1s, the.sum of the two

_legs of a right triangle would equal the hypotenuse

+ the perpendicular upon, .tHe hypotenuse from the right
,angle. But this 1is impo sible, Therefore the bisec-
tor of the angle B' doed¥ not pass through the vertex

- B. ‘

8. The square on 1 LO = . the sum of the squares
-on PF and GK; for LO : PF : GK = BC : CA : AB,
9. Ete., etc.a
See Casey's Sequel to muclid 1900, Part I,

‘ p. 16.

< On,, a2, 93

1




PYTHAGOREAN MAGIC SQUARES

/ \, \\J\

Alis

Vi 2A2%)1/3

(4 [1/%
¥y 2312¥122

Fig. 355

Clebel/zi2obs IK

One

The sum of any row,
column or diagonal of the
square AK is 125; hence the .
sum of all the numbers in the
square is 625. The sum -of any
row, column or dlagonal of
square GH is 46, and of HD is
147; hence the sum of all the
numbers in the square GH 1is
184, and in the square HD 1is
441. Therefore the magic

! square AK (625) = the magic

square HD (441) + the magic
square -HG-(184)-

v

Formulated by the author, July, 1900.

3 \)
\ 5 Y
€
’ > W
A/?Lﬁ 5
22127124/ 3
¢ RS /
C oy Ryj23Rd32
Clqlsynz 1K
Fig. 356

Two .

The square AK 1s com—
posed of 3 magic squares, 5 s

15 and 25 The square HD is .

a magic square each number of
which 1s a square. The square
HG is & magic square formed
from the first 16 numbers. Fur-
-thermore, obsnrve that the sum
of the nine sguare numbers in
the square HD equals 482 o

2304, a square number.

Formulated by the -

author, July, 1900.

254
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F
& \o\\ \ .,F
SN >
XA w5
ey o\\ A% >0
WX VXA
C (\,
A ¥[2] 4]
She a4
28] 11 Ll ] ¢
ACAIT1 LT
\ Cladr [s s ledK
Fig. 357

The sum of all the num-

bers (AK = 325) = the sum of

= 189) + the sum of all the

numbers in square (HG + 136).

Square AK is made up
of 13, 3 x (3 x 13), and 5

.all the numbers in square (HD

x (5 x 13); square HD is made

up of 21, 3 x (3 x 21), and

square HG is made up of 4 x 34

- each row, column and diag-

onal, and the sum of the four

inner numbers.

Many other magic squares
of this type giving 325, 189 and 136 for the sums of

AKX, HD and HG respectively may be formed.

This one was formed by Prof. Paul A. Towne,
of West Edmeston, N.Y. ’ i

32]8¢

20

(8

27

30

X2

e
27 [28

14

/11

2

)

33} /

¢l

12

17

351K

Fig. 358

type may be formed.

my ownkof this type.

EQEL‘

The sum of numbers in

sq. (AK = 625) = the sum of

numbers in sq. (HD = 441) + the

sum-of numbers in sq. (HG
_ 184).

Sq. AK gives 1 x (1
x 25);-3 x (3 x 25); and 5

x (5 x 25), as elements; sq. HD
“gives 1 x (1 x 49); 3 x (3 x 4g)

as elements; and sq. HG gives

1 x 46 and 3 x 46, as elements.
This one als6é was.formed:’

by Professor Towne, of West
Edmeston, N.Y. Many of this

i

See fig. 355, above, for one of
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Also see Mathematical Essays and Recreations,
~by>HermanﬁSchubert**in*TheMOpen“Court*?ub11snlng‘Co s

Chicago, 1898,_p. 39, for an extended theory of The
Magic Square.

v Eive

Observe the following series:
, The sum of the inner 4 numbers is 1% x 202;
s - of the 16-square, 22 x 202; of the 36- -square, 3°
. x-202; of the 64-square, 4 x 202; and of the 100-
square, 52 x 202,

»
W\
\!
SOOE &
U \
\ Y . - F
. \y §)
¢ » ey \>
e IR SOVAAON
’\‘5 ‘\\ 6, r“ ‘) '\'
) z \',G\
' e B e "
\ ‘ '5 % h\) M
)
' 2 p3lrlrrlisbylie -
) 19 3hvidd7spa
0 WWlyilL SKE P TR 1
0. 35} THOK!
278 ofs3) 5 2
e i 3
(b els slsris
L . cbdivkrl-d20ks bilvds
. ' ' T S 7Y, 4 7 !
S " Fig. 3%

"On the hypotpnuse and legs of the right-
angled triangle, ESL, are constructed the. concentric
magicp%quares of.100, 64, 36 and 16. The sum of the

, 5 two numbers at the extremities of the diagonals, and
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of all lines, horlzontgl and diagonal, and of the two
numbers equally distant from the extremities, is 101.
The sum of the numbers in thg;giagonsls and lines of
each of the four concentric maglc squares 1s 101 mul-
tiplied by half the number of cells in boundary lines;
that is, the summations are 101 x 23 101 x 3; 101 x 4
101 x 5. The sum of the 4 central numbers is 101 x 2.

. the sum of the numbers in the square (SO
= the sum of the. numbers in the
1818) + the sum of the numbers
3232)

= 505 X 10 5050) =
square (EM = 303 x 6 =
in the square (EI

+ 4Ou=,

4ok x 8 =

5052

Notice that in the above diagram the concen-
tric magic squares on the legs is identical with the
central concentric magic squares on-the hypotenuse."

Professor Paul A. Towne, West Edmeston, N.Y.

An indefinite number of magic squares of this

.type are readily formed.

A

[ I S -

i
=~
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ADDENDA

o The following proofs have come to
me slnce June 23, 1939, the day on which I
finished page 257 of this 2nd edition

Iug_uungtgd_ﬁgztxz__ ht
In fig. 360, extend
HA to P making AP = HB, and
through P draw PQ par. to HB,
making CQ = HB; extend GA to
0, meking AO-= AG; draw FE, -
GE GD, GB, CO, QK, HC and BQ.
" Since, obvious, tri.
KCQ = tri. ABC = tri. FEH,
and since area of tri. BDG

E

' P / % = 4BD x FB, then area of quad.
\\ | ’;>0/ | GBDE = BD x (FB = HP) = area .
. A / 1K of paral. BHCQ = sq. BE"+ 2
CE-~~-7% . ot BHG,. then it follows.
L 7 IV st R S
ér/ that: B i
\¢ Sq. AK = hexagon
Fig. 360 - ACQKBH - 2 tri. ABH = (tri.

ACH = tri. GAB) + (paral. BHCQ
= sq. BE + 2 tri. BHG) + (tri. QKB = tri. GFE) = hex-
agon GABDEF - 2 tri. ABH = sq. AF +.sq. BE. There-
fore sq. upon AB = sq. upon HB + sq. upon HA, L h?
= a® + b%. Q.E.D. -~

a. Déevised, demonstrated with geometric rea-
son for each step, and submitted to me June 29, 1939
Approved and here recorded July 2, 1939, after ms.
for-2nd ‘edition was completed.
b. Its place, as to type and figure, is next
-after Proof Sixty-Nine, p. 141, of this edition,
¢. This proof is an Original his No. VII, by
Joseph Zelson, of West Phils, ‘High School, Phila., Pa.

258 .
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b TR TR ETLTIE R T T R e e,

T OTERFEVETR

It is easily proven

%h\ ' _ that: tri, GFY = tri., FHE
L(‘:\ . = tri. ABH = tri., CMA = tri,
/‘.~%;\ ARC = tri, CWK; also that

that paral.

gif ; E

| J 1 ABH = (tri.

|

3 \ i/, ‘m : + (tri. CXH =

tri. GAE =—tris CMH; tri.
LGE = tri. CXH; tri. FYL
= trl, EDN =
GFY = tri. GFL + tri. NED;

tri. WKY; tri.~

BHWK = sq. HD.

Then 1t follows that sq. AK
= pentagon. MCKBH - 2°tri.

MCH = tri.- GAE)

tri, LGE)
2NN + [(quad. BHXK = pent. HBDNE)
M*‘I‘L“"S{K = sq. BE + (tri. EDN = tri.
- Fig. 361 WKX)] = hexagon GAHBDNL - 2
: tri., ABH = sq. AF + sg. BE.

s 3G upohAAB = 8q. upon HB + sq. upon HA.

&0 e R

.
'-l’l'—'a +D-

a. This proof, . with figure, devised by Mas-

ter Joseph Zelson and submitted Jine
here recorded July 2, 1939 ‘

b. Its place 1is next aftervNo

185 above.

- L e v B e e s oo i o @ om0

quad. GMLC
quad. OBDE +

= trl. EDN =

29, 1939, and

247, on p.

.

-+ In' fig. 362, draw GD.
At A and B erect perp's AC
and BK to AB. :
‘0 draw FM, and EN = FM = AB,

.Extend DE to K.

It is obvious that:
= quad. OBDE;

“Through L and

(tri. LMA = tri.

OKE) = tri. ABH; tri. BDK

try. ABH = tri,

EFH = trl. MFG = tri. CAG. !

bt
H
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%

Then”itmﬁollowskthat: sq. GH + sq. HD = hex-
agon GABDEF - 2 tri. ABH

= [trapJ FLOE - (FL ¥ OF = FM =éAB2 x (FE = A%)}\
' X
+ [trapu.r LABO = LA *+ BO = g AB) | (AB)] _ AB?
= sq. on AB. ’;

: ‘ <. 8q. upon AB = sq. upon HB + sq. upon HA.
. ~h%® = a® + b2, . ' B '

- a. Type J, Case (1), (a)...8o its place is .
o next after proof Two Hundred “Nine, p. 218. :

] o . - 'b. Proof and fig. devised by Joseph Zelson.
Wb Sent to me July 13, 1939.

Two _Hyndred Fifty-Qne o -

Construct tri., KGF

=—tri—ABH;—extend—FE—to—T
and 0, the point at which a
.perp. from D intersects FE
extended; also extend AB to
M and N where perp's from G i
and D will intersect AB ex- =~
.. tended; draw GD.
, ) By showing that:’
_ trl, KLF = tri, DOE = tri.
Fig. 363 DNB; tri. FLG = tri. AMG;
“y tri., KGF = tri. EFH = tri.
ABH then it follows that: sq. GH + sq. HD = hexagon
LGMNDO - 4 tri, ABH ‘ '

K
!

\ ’ - -
= [tra'p. 1.GD0 = LG +D0 = KG = AB) "g‘E AB)+(2  alt . F: )___
2ABZ - .

, b 4 tri, ABH =
B e

. © 5q._upon AB = sq. upon HB + sq. upon HA.
o.oh = 8 “+ b . QoEoDo

- 4 tri. ABH = AB® - 4 tri. APBH.
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; j
a. Type J. Case (1), (a). So its place is
next after Proof Two Hundred .Fifty-One.
" 'b. This proof and -fig. also devised by Master
Joseph Zelson, a lad with a superior intellect. Sent

... to me. July 13, 1939.

Iwo _Hyndred Fifty=-Two

By disséﬁﬁioh:uas per
figure, and the numbering of
corresponding parts by same:
numeral, it follows, through
superposition of congruent
parts (the most obvious proof)
that the sum of the four
parts (2 tri's and 2 quad'ls)
in the sq. AK = the sum of

the—three—parts—{@—tri-ts—and

i AL b
o

L

1 quad.,) in the sq. PG + the
sum of the two parts (1 tri.
and 1 quad ) in the sq. PD.
That 1s the area of the sumfbf the parts 1+2
+ 3 + 4 in sq. AK (on the hypotenuse AB) = the area
of the sum of the parts 1' + 2' +-6 in the sq. PG
. (on the line ‘GF = line AH) + the area of the sum of
the parts 3'.+ 4' in the sq. PD (on the line PK
= line HB), observing that part 4 + (6 = 5) = part 4,
a. Type I, Case (6), (a). So its place be-
longs next after fig. 305, page 215.
. b. This figure and proof was devised by the
author on March 9, 1940, 7:30 p.m.

-

»

¢

ng_ﬂunirgé ELfty=Three
l .

In "Mathematics for the Million," (1937), by
Lancelot Hogben, F.R.S., from p. 63, was taken the
fllowing photostat. The exhibit is 'a proof which 1s
credited to an early (before 500 B.C.) Chinese mathe-
matician. See also David Eugene Smith's History of
Mathematics, Vol. I, p. 30, l

%
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T

\

e '*—“"“M‘arhz'maﬁcﬁrPrehisto:y\ -

v

- 8 C
| F16. 19
The Book of Chou Pei Sua;xmm'ng, probably written about~A.D. 40, is
attributed by oral tradition to a-sou“rcc before the Greek gecometer taught what
we-call the Theorem of Pythagoras, i.c. that the squarc on the lorigest side of
a right-angled triangle is cquivalent to the sum of the squares on-'the other
wo. This very carly example of -block printing from an ancicnt edition of the
Chou Pei, as given' in Smith's History of Mathematics, demonstrates the truth
of the theorem. By joining to any;l'right-anglcd_ triangle like the black figure
¢Bf. three other right-angled triangles just like it, a square can bc formed.
Next trace four oblongs (rectangles} Iike eafB, each of which is made up of
two triangles like ¢fB. When you ﬁavc read Chapter 4 you will be able to put
together the Chinese puzzle, which is much less puzzling than Euclid. These
are the steps: / . -
TriangleefB = § rcgt;ﬁnglc eafB =} Bf . B
Square ABCD = Sduare ¢fzh + 4:times triangle ¢fB
‘ —eft = 2Bf.eB
g Also Square ABCD = Bf? 4 ¢B? + 2Bf.¢B
So ¢ft + 2Bf.¢B .- Bf?  ¢B? 4 2Bf.¢B i
Hence . ¢f? = Bf? + ¢B* /,/ / .
‘ ’ e

- ~

oo

a. This believe-it-or-not "Chinese Proof" be-
longs after proof Ninety, p. 154, this book. (E.S.L.,
Jinevy o .

April 9, 19%0). ‘ .
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~ R

e e el aten ‘ ~ :
. ~ o In the figure extend k
. GF.and 'DE to M, and AB and
ED to L, and number the
parts as appears in the
quad. ALMG.
It 1s easlly shown
that: OAABH = AACG, ABKN
= AKBL and ACNF = AKOE;
whence [OAK = (AABH = AACG -
in sq, HG) + quad. AHNC com.
Fig. 365 to ['s AK and HG + (ABKN.
) - . = AKBL)=(ABLD + quad. BDEO
‘ | = sq. HD) + (AOEK = ANFC) = OHD + [OJHG. Q.E.D.
= h® = a? + b2, o
F” a. Thls fig. and demonstration was formulated

3 ) . by Fred., W. Martin,ta pupilyin the antral Junior-
f . Senior High School at South Bend, Indiana, May 27,
| 1940, I

b. It should appear in this book at the end

of the B-Type sectlon, Proof Ninety-Two.

, —Draw CL perp. to AH, join
CH and CE; also GB., - Construct
sq. HD' = sq. HD. Then observe
that ACAH = ABAG, ACHE = AABH,
ACEK = ABFG and AMEK = ANE'A.

. Then it follows that sq,
AK = (DAHC = DAGB in sq. HG) :
+ (AHEC = ABHA in sq. AK) + (AEKC .
= ABFG in sq. HG) + (ABDK - AMEK
= quad. BDEM in sq. HD) + AHBM .
com, to sq's AK and HD = sq. HD
+ sq. HG. .~ h2 = a® + p2,.

W. This proof was 'dis-

covered by Bob Chillag, a pupil
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in the Central Junlor-Senior High School, of South
Bend, Indiana, in his teacher's (Wilson Thornion's) ‘
Geemetry class, heing the fourth proof I have re-
celved from pupils of that school. I recelved this
proof.on May 28, 1940, '
. » b. These four procfs show high intellectual
sbillity, and prove what boys and girls can do when
permitted to think lndependently and logically.
~ E, 8. Loomis. : ' o
¢c. Thils proof belongs in the book at the end
-~~of" the E~Type -section, One Hundred Twenty-Six,

]

[V

. way WP
. 8
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Two_Hundred Fifty-Six

- wm Jo s W o oo A ape s = S — i =y s o e

Geometric proofs are either Buclidian, as the
preceding 255, or Non-Euclidian which are either
Lobachevskian (hypothesis, hyperbolic, and curvature,
negative) or Riemanian (hypothesis, Elliptic, and
curvature, positive). ‘

The following non-euclidian proof is & liter-
al transcription of the one given in "The Elements
of Non-Euclidian Geometry," (1909),.by Julian Lowell
Coolidge, Ph.D., of Harvard University. It appesars
on pp. 55-57 of said work. It presumes a surface of
constant negative curvature,--a pseudo sphere, --hence
Livachevskian; and its‘esteblishment at said pages
was necessary as a "sufficient basis for trigonome-
try," whese figures must appear on such a surface.

The complete exhibit in saild work reads:

"Let us not fail to notice that since 4ABC 1is
a right angle we have,” (Chap. 'III, Theorem: 17 ),

1im, %C-= cos (1[2- - 8)=sin 6. ---(3)

"The extension of these functions to angles
.‘ . ! T[ R

vhose measures are greater than > wili afford no
difficulty, for, on the one hand, the defining sef}es
remains convergent, and, on the other, the geometric
extension-may be effected as in-the elementary books.

"Our next task 1s a most serious and funda-
mental one, to find ‘the relations .which conniect the , :
mpasur93~énd~sides~and—ahg&es-ofma*rightﬁtriangIéi“'”“f““”f“v"*“”“w_""

-

: T
We shall assume that both ¥ and © are less than — ,

. bolic hypothesls, while under-the elliptic, such will

Let this be the AABC with L ABC as the right-aﬁgiéﬁ*

Let the measure of {BAC be ¥ while that of {BCA is o,
\ 2

an obvious necessity under the euclidian or hyper-

stlll.be the case if the sides of the triangle be not
large, and the case where the inequalities do not.
hold may be easily treated from the case wheré they
do. Let us also call a, b, ¢ the measures of BG, CA,
AB respectively.
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- "We now make rather an elaborate construction.

Take B, in (AB) as near “to B as desired, and A, on
the extension of (AB)
beyond A, so that AA;
= BB, and construct
AA1B,C1 = ABC, Ca 1y1ng*
not far from C; a con-
struction which, by 1
(Chap. IV, Theorem 1),
is easily possible 1if
BB; be small enough. Let
B1C. meet (AC) at C».
JC1C2C will. differ but
1little from 4BCA, and we
may draw C,Cz perpendic-
ular to CCz, where Cs 1s
Fig. 2 -+ a point of (CCz). Let
7 us next find Az on the
extension of (AC) beyond A sc that AzA = CzC .and and Be
on the extehsion of. (C1Bi) beyond By so that BiBz
—-5102, which 1is certainly possible as CiCz is very
smell, Draw AzBo. -We saw that XC1C2C will differ
from 4BCA by an infinitesimal (as B;B decreases) and
)JCC1By will approach a right angle as a limit. We
thus get two approximate expressions of sin 6 whose

comparison yilelds CiCa - CC. +e. = 808 a/k BB, v e,

CiC2 CCz CCz
for CCl - cos a/k BB; 1s infinitesimal in comparison
to BB:1 or CCi.. Again, we see that a line through the

middle point of (AA;) perpendicular to AAp will also -
Lo ww—be perpendicular to Alcl, and the distance of the in-
tersections will differ 1nf1n1tesimally from sin VAA,.

We see that 0102 differs by a higher 1nf1nitesimal

from sin ¥ cos b/k ARy, so- that cos Esin\IJ
k 0102
cos a/k BBy
= +52-
cc,

"Next we see that AA; = BB,, and hence cos E

+ €4

1 ’ Ci1C2 L
= m cos a/k ._YE;:-+ €4- ,Moreoyer, by

&
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construetion 0102 BlBa, CCe AAg < A perpendlcu-

. Tar. to AAl from the middle point of cmae) will be
perpend*cular ‘to AaBa, and tHe distdnce of the inter-
sectiodns. will dlfﬂer 1nf1nitesimally from each of

these expressions 581n'¢AA2’“%3§%E7E BlBg

Hence
cos %\- cos-% cos-%.< e. Cos’ %?L cos'i cos = ---(4)4
"To get the special formula for the euclidian
case, we should develop all cosines in power seriles,
- . multiply through by ka, and- then put 1/x% = 0, get-
o ( ting b2 = a2 +- 02, the usual Pythagorean formula.

a. This transcription vas taken April 12, h
1940 by E. S. Loomis,
b. This proof should come after e, p. 2U44.
This famous Theorem, in Mathematical Litera- -
ture; has been called: ' . ‘
1. The Carpentér's Theorem L
2. The-Hecatomb Proposition:
" 3. The Pons Asinorum
y, .The Pythagorean Proposition *
5. “Phe 47th Proposition
Only four kinds of;proofs are possible
o 1. Algebrailc
- > 2. Geometric--Euclidian or non-Euclidian "
3, Quaternionic
o 4.Dmmmm '
s ;n—mg%inwestig&tions*f“founﬂ—the—fu;;OWng
‘ Collections of Proofs: ‘
No. Year .
1. The'American Mathematical Monthly 100 189¥¥1901
2. The Colburn Collection 108 °~ 1910
3+-The Edwards Collection 40 1895 -
4, The.Fourrey Collection 38 1778
5. The Heath Monograph Collection 26 1900
6. The Hoffmann Collection 32 /1821
7. The Richardson Collection’ " Lo 1858
8. The Versluys Collection 96 . 1914
9. The Wipper Collection 46 . 1880
10. The Cramér Collection 93 1837
11. The. Runkle Colleétion .. 28 1858
sr, bR ;".:; > -
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2.

3 .
4, °Arsbic, see p. 121; under proof ...

5.

» 3O

oo}

10.
11.

12.

13.
14,

15.
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SOME NOTED -PROGES™" == 7%
Of the 370 demonstrations, for:

Proof

‘The shoftest, see p. 24, Legendre's.l........ One

The longest, sée p. 81, Davies Legendre .. Ninety
The most popular, p. 109, ..... teessssess Sixteen
| . Thirty-Three
Bhaskara, the Hindu, p. 50, .......... Thirty-Six
The biind girl, Coolidge, p.-118, .... Thirty-Two

~—

The Chinese--before 500 B.C., p. 261,<..00een.

. s essseseesisssssssns ‘e Two Hundred Fifty-Three

Euclid's, ﬁ. 120, vererenatenrnenens Thirty-Three

Garfield's (Ex-Pres.), p. 231, ......... Ceeeecens
® 00 00 02 0 0 00 00 00 00 00000 o0 TWO Hundl'ed Thirty‘one

Huygens' (5. 1629}, p. 118, ‘.u..}..;. Thirty-One

Jashemski's (886 18), D. 230, “sesrneverneiosanss.
cecenne Ceesssecssesssessenns Two Hundred Thirty

Law of Dissection, p. 105, ...... L, =3 o}
Leibniz's (b. 1646), p. 59, ....... Fifty-Three

Non-Euclidian, p. 265, ... Two Hundred Fifty-S$ix

16.
17.

18.

1

Pentagon, pp. 92 and 238, ...uvereeereiorcacionns

One Hundred Seven and Two Hundred Forty-Two

Reductio ad Absurdum, pp. 41-and 48, i
0 0000000000000 v ‘ Sixteen &nd Thirty—TWO
.‘Ninety-Eight

Heor*

Theory Of Limits’/po86’ ooooo.ﬁooo
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‘ ' ADDENDA - : 269 | ‘!
' |

They came_ to me from everzwhere

1. In 1927, at the date of the printing of the 1st
edition, 1t shows--No. of Proofs:

Algebraic, 58; Geometric, 167; Quater-
nionic, U4; Dynamic, 1; in all 230 dif-
ferent proofs :

) 2. On November 16, 1933, my manuscript for a second
. ‘ edition gave: :

Algebraic, 101; Geometric, Qil Quater-
nionic, 4;: Dynamic, 2; in all 318 dif-
ferent proofs.

3. On.May 1, 1940 at the revised completion of the
* manuscript for my 2nd edition of The Pythagorean
Proposition, it contains--proofs

Algebraic, 109; Geometric, 255; Quater-
- nionic, 4; Dynamic, 2; in all 370 dif-

ferent proofs, each proof calling for

its -own specific figure. And the -end

1s not yet.
~E. 8. Loomis, Ph.D. *
at age nearly 88,

May 1, 1940

e = e
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TESTIMONIALS

@

From letters of apprecilation and printed Re-
views the following four testify as to 1ts worth.

New Books. The Mathematics Teacher 1928,
has: The Pythagorean Theorem, Elisha 5. Lc imis,
1927, Cleveland, Ohlo, 21% pp. Price $2.0(.

"One hundred sixty-seven geometric proofs
and fifty-eight algebraic proofs besides several
other kinds of proofs for the Pythagorean Theorem
compiled in detailed, authoritative, well-organized
form will be a rare 'find' for Geometry teachers who
are alive to the possibilities of their subject and
for mathematics clubs that are looking for interest-
ing material. Dr. Loomis has done’ a scholarly piece
of work in collecting and arranging in such conven-

. ient form this great number of proofs of our historic
theorem.

"The book however is more than a
loguing of proofs, valuable as that. may be, but pre-
sents an organized suggestion for ‘many more original
proofs. The object of the treatise 18 twofold, 'to
present to the future investigator, under.one cover,

.8imply and concisely, what 1is known relative to the

Pythagorean proposition, and to set forth certain es-
tablished facts concerning the proofs and geometric

figures pertaining thereto."”

"Phere are four kinds of proofs, (1) those
based upon-linear relations--the algebraic proof,
(2) those based upon comparison of areas--the geo-

- metric proofs, (3) those based upon vector operations

~--the quaternionic proofs,'(4) those based upon mass
and veloglity--the dynamic proofs. Dr. Loomis con-

“tends that the number of algebraic and geometric
'proofs are each limitless; but that nesproof by trig-

onometry, analytics or calculus s possible due to

2TT 7
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the fact that these subjects are based upon the right-
triangle proposition

"This book 1s a treasure chest for any mathe1
matics teacher. “The twenty-seven years which Dr.
Loomis has.played with this theodrem is one of his
hobbies, while he was Head of the Mathematics Depart-
ment of West High School, Cleveland, :Ohio, have been
well spent since he has gleaned such treasures from
the archives. It 1s impossible in a short review to
do justice to this<splendid bit of research wbrk so
unselfishly done for the love of mathematics. This
‘book should be highly prized by every mathematics
teacher and should find.a prominent place 1in ‘every
school_ and public library."

" . H., C. Christoffenson™.

Teachers College b
Columbia University, N. Y City - '/

- ‘ " From another review this appears:

"It (this work) presents all that the litera-
ture of -2400 years gives relative to the historically
renowned and mathematically fundamental ‘Pythagorean

- ‘proposition--the proposition on which rests the sci-
" ences of civil englneering, navigation and astronomy,
Ty and to which Dr. Einstein conformed in formulating.
and positing his generdl theory of relativity in
1915, - -

"It establishes that but four kinds of proofs
are possible—-the Algebraic, the Geometric the Quater-
nionic and -the Dynamic. _—

"It shows that the number of Algebraic proofs

S is limitless.
SR - . "It depicts 58 algebraic and 167 geometric
5 proofs.
* " "It declares that no trigonometric, analytic
geometry, or calculus proof 1is possible.

"It contains 250 geometric figures for each

of which a demonstration is given.

{ L SR ¥y ¥ ¥ x - Y
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"It contalns a complete bibliography of all
references to this celebrated theorem.

"And lastly this work of Dr. Loomls is so
complete in its mathematical survey and analysis that
1t 1s destined to become the reference book of all-
future investigators, and to‘this end 1ts sponsors
are sending a complimentary copy ‘to each .of the great.
mathematical libraries of the United States and
Europe

Masters and Wardens Associlation
~ . - of the
22nd Masonic District of Ohio

- Dr. Oscar Lee Dustheimer, Prof, of Mathe-
matics and Astronomy in Baldwin-Wallace College,
Berea, Ohlo, under date of December 17, 1927, wrote:
"Dr. Loomis, I consider this’book a real contribution
to Mathematical Literature and one that you can be
Jjustly proud of ...l am more than pleased with the
book." . .

Oscar L. Dustheimer

Dr. H. A. Naber, of Baarn, Holland In a
weekly paper for secondary instructors, printed, 1934,

‘In Holland Dutch, has (as translated): "The Pytha-

gorean Proposition, by Elisha S. Loomls, Professér
Emeritus of Mathematics, Baldwin-Wallace College,"
(Bera, 0.).. S

~Dr, Naber states...."The author has classi-
fied his (237) proofs in groups: algebraic, geometric,
quaternionic and dynamic proofs; and these groups are

- further subdivided!" "..,.Prof. Loomis himself has

wrought, in his book a work that 1s more durabile
than bronze and that tower higher even than the pyra-
mids." ",,,.Let us .hope--until we know more com-
pletely--that'by this. procedure, as our mentality

Aﬂ""

grows deeper, it will become as in him‘ The Philo-

sophic Insight, L

iY
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phy on pp. 271-76 I~
2. Names of Texts » Journals, Magazines and other publications K
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Chinese proof, 262
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Collins, Matthew, 18
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